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ABSTRACT
We present MiSoSouP, a suite of algorithms for extracting high-

quality approximations of the most interesting subgroups, accord-

ing to different interestingness measures, from a random sample of

a transactional dataset. We describe a new formulation of these mea-

sures that makes it possible to approximate them using sampling.

We then discuss how pseudodimension, a key concept from statis-

tical learning theory, relates to the sample size needed to obtain

an high-quality approximation of the most interesting subgroups.

We prove an upper bound on the pseudodimension of the problem

at hand, which results in small sample sizes. Our evaluation on

real datasets shows that MiSoSouP outperforms state-of-the-art

algorithms offering the same guarantees, and it vastly speeds up

the discovery of subgroups w.r.t. analyzing the whole dataset.

CCS CONCEPTS
• Mathematics of computing → Probabilistic algorithms; •
Information systems → Data mining; • Theory of compu-
tation → Sketching and sampling; Sample complexity and
generalization bounds;
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1 INTRODUCTION
A fundamental task within data mining is subgroup discovery [8, 10,

32], which requires to identify interesting subsets (the subgroups) of
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a dataset, for which the distribution of a specific feature (the target)
within the subgroup largely differs from the distribution of that

feature in the entire dataset. The notion of interestingness is cap-
tured by a formally-defined measure of quality that combines the

frequency of the subgroup in the dataset and the difference between

the mean of the target within the subgroup and the mean of the tar-

get in the entire dataset. Subgroup discovery is a broadly applicable

task and is relevant in many domains: in market basket analysis,

it uncovers groups of customers with a particular interest in buy-

ing a product; in social networks, it identifies members attracted

to a given topic; in biomedicine, it discovers groups of patients

associated with a clinical phenotype (e.g., response to therapy).

Many exact algorithms for subgroup discovery have been pro-

posed [10, 32] (see also the comprehensive reviews by Herrera et

al. [5] and Atzmueller [2]). They naturally require to process the

entire dataset, but the sheer amount of data may render such (full)

computation infeasible. A general approach to deal with very large

datasets is to only analyze a small random sample of the data. Ran-
dom sampling has been successful in many areas of knowledge

discovery, such as frequent itemsets mining [21, 22] and graph

analysis [23]. The main challenge in using sampling for subgroup

discovery is understanding how close the qualities of the subgroups

observed in the sample are to their exact values, which are unknown

as they can only be obtained by processing the entire dataset. Solv-

ing this challenge requires the derivation of a sample size S such

that, with high probability, on a sample of size S , all the sample qual-

ities are within ε from the exact ones, where ε is an user-specified

parameter (to be fixed with domain knowledge) controlling the

maximum allowed error.

The derivation of such sample size for subgroup discovery is

more complex than in other scenarios (e.g., than in frequent itemsets

mining [21, 22]), since estimating the quality of a subgroup requires

to approximate both the frequency of the subgroup in the dataset

and the mean of the target within the subgroup. The latter is an
especially challenging inferential task since the target mean is a

conditional expectation. This increased complexity is reflected in

the lack of rigorous sampling algorithms for subgroup discovery,

with even popular approaches [25] not providing rigorous quality

guarantees on their output, as we discuss in the supplementary

materials [24].

https://doi.org/10.1145/3219819.3219989
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1.1 Contributions
The main focus of this work is the extraction of a high-quality

approximation of the top-k most interesting subgroups from a

random sample of the dataset. Our contributions are the following.

• We precisely define the concept of ε-approximation of the

set of top-k subgroups according to various interestingness

measures, extending and strengthening an existing defini-

tion by Scheffer and Wrobel [25, Def. 2]. The user-defined

parameter ε controls the quality of the approximation.

• We give a new formulation of the 1-quality, one of the key
measures of subgroup interestingness, and as a consequence

also of other fundamental measures. This novel formulation

is crucial to enable the estimation of the interestingness of

subgroups from a sample.

• We present MiSoSouP, a suite of algorithms that use ran-
dom sampling to extract, with probability at least 1 − δ , ε-
approximations of the set of top-k interesting subgroups

from a small random sample of the dataset.MiSoSouP is the

first algorithm to obtain such approximations, while previ-

ous work [25] does not actually provide rigorous guarantees

(see the supplementary materials [24]). The only parameters

of MiSoSouP are ε , k , and the confidence parameter δ , which
are all easily interpretable, therefore making our algorithms

very practical.

• Wederive the sample size employed byMiSoSouP using pseu-
dodimension [19], a key concepts from statistical learning

theory [30]. We show an upper bound to the pseudodimen-

sion of the task of subgroup discovery, which is independent

from the size of the dataset and only depends on properties

of the set of possible subgroups (i.e., the language) and on

the number of columns of the dataset. The computation of

the upper bound is essentially cost-free. To the best of our

knowledge, ours is the first application of pseudodimension

to the field of subgroup discovery, and in general to pattern

mining.

• We perform an extensive experimental evaluation showing

that MiSoSouP identifies rigorous approximations to the

most interesting subgroups using a small fraction of the

dataset, and it provides a significant speed-up w.r.t. other

sampling approaches with the same guarantees.

2 RELATEDWORK
Many measures for evaluating the quality (i.e., interestingness) of

subgroups have been proposed in the literature, andmany subgroup

discovery algorithms are available.We discuss some of themeasures

in Sect. 3, and refer the reader to the surveys by Herrera et al. [5]

and Atzmueller [2] for details about the algorithms. In this work

we treat these algorithms as black-boxes: we run them on a small

random sample of the dataset and we are interested in how well

the so-obtained collection of interesting subgroups approximates

the one we would obtain by mining the whole dataset.

Scheffer and Wrobel [25] first studied the use of sampling for

subgroups: they present GSS, a progressive sampling algorithm to

compute an approximation of the most interesting subgroups. Un-

fortunately, the analysis of GSS has some issues. The first concern

is that the quantities of interest (e.g., the number of subgroups at

iteration i) are random variables, while the analysis assumes that

they are fixed values. Another major issue is that the analysis uses a

Chernoff bound for the probability of deviation for the unusualness
of a subgroup, but such bound cannot be employed since the un-

usualness is a conditional probability, hence it cannot be obtained
as the average of a binary function over all transactions in the

sample. Other issues and possible partial solutions are discussed

more in depth in the supplementary materials [24]. Even when

(partially) corrected, the analysis of GSS relies on the availability of

probabilistic confidence intervals on the estimated quality of each

subgroup under consideration, and then on a union bound over all

possible subgroups, in order to obtain simultaneous guarantees on

the confidence intervals of all subgroups. The union bound is, by

design, loose in many practical situations, effectively assuming that

the considered events are independent. As a results, the stopping

condition used by GSS cannot be satisfied at small sample sizes.

MiSoSouP instead relies on pseudodimension [19], which allows

us to use very small sample sizes.

Some works focused on the issue of the statistical significance

of subgroups. Duivesteijn et al. [3] designed a permutation-based

approach to estimate the distribution of false discoveries, which is

used to assess the ability of various quality measures to distinguish

between statistically significant patterns and false discoveries. Van

Leeuwen and Ukkonen [29] showed that several real datasets con-

tain large numbers of high-quality subgroups, many more than

are expected from randomly drawn subgroups. Terada et al. [27]

introduced LAMP, a method to identify a minimum generality

threshold to find subgroups while bounding the family-wise error

rate (FWER), where the significance of a subgroup is given by its

association with a binary target variable as assessed by Fisher exact

test. Minato et al. [15] subsequently improved LAMP by employing

a more efficient mining strategy. We do not investigate the issue of

statistical significance of subgroups, but one of the quality measures

we study (i.e., the 1/2-quality measure, see Sect. 3) is a proxy for

the z-score, a well-defined measure of statistical significance.

Our approach is orthogonal to heuristic approaches that sample

subgroups to speed-up the discovery of interesting subgroups [17].

In contrast, MiSoSouP samples transactions while providing rig-

orous guarantees on the relation between the qualities of the sub-

groups obtained from the sample and their exact qualities (i.e.,

obtained from the entire dataset). In fact, any exact or heuristic

algorithm can be used to mine the sample fromMiSoSouP while

maintaining the aforementioned guarantees for the resulting sub-

groups. The use of sampling is also orthogonal to techniques that

aim at reducing the redundancy in the output collection of sub-

groups [28]. Indeed these approaches could be applied to the col-

lection of subgroups obtained byMiSoSouP.
Pseudodimension [19] is a key concept from statistical learning

theory [30]. Like many other measures of sample complexity, such

as Rademacher averages, it has long been considered only of the-

oretical interest, but recent applications [4, 7, 20, 22, 23] of these

quantities have shown that they can be extremely useful in prac-

tice, especially on very large datasets. Pseudodimension is closely

related to the concept of Vapnik-Chervonenkis dimension that has

been used in the context of frequent itemsets mining by Riondato

and Upfal [21]. Despite the relative similarity between subgroup

discovery and frequent itemset mining, using pseudodimension



for the former presents significant challenges, such as lack of anti-

monotonicity in the quality measures, that do not allow to use

the same approach by Riondato and Upfal [21]. To the best of our

knowledge, ours is the first application of concepts from statistical

learning theory to the task of subgroup discovery.

3 PRELIMINARIES
In this section we formally introduce the core definitions and theo-

rems that we use throughout the article.

3.1 Subgroup discovery
We now define the fundamental concepts of subgroup mining [9]

and the quality measures used to rank the subgroups.

LetD be a dataset, i.e., a bag of (z+1)-dimensional tuples, known

as transactions, over the attributes {A1, . . . ,Az ,T }. The attributes
Ai , 1 ≤ i ≤ z are known as description attributes, while T is the

target attribute. Transactions take value in Y1 × · · · × Yz × YT ,

where each Yi is the (categorical or numerical) domain of attribute

Ai , while YT is Boolean (i.e., YT = {0, 1}).

A subgroup is a conjunction of disjunctions of conditions on the

description attributes. An example of subgroup is: (A1 = “blue” ∨

A1 = “red”) ∧ (A2 > 4). A transaction t ∈ D supports a subgroup
A if the values of t ’s attributes satisfy A. The cover CD (A) of A on
D is the bag of transactions in D that support A. The generality
gD (A) of a subgroup A on D is the ratio between the size of the

cover of A on D and the size of D:

gD (A) =
|CD (A)|

|D|
.1

Given a bag B of transactions, let

µ(B) =
1

|B|

∑
t ∈B

t .T

be the target mean of B, where t .T denotes the value in the target

attribute of the tuple t . If B = ∅, µ(B) = 0. The target mean of a
subgroup A on D is

µD (A) = µ(CD (A)) .

The unusualness2 uD (A) of A on D is the difference between the

target mean of A and the target mean of D:

uD (A) = µD (A) − µ(D) .

The generality and the unusualness are used to define quality mea-

sures for the subgroups (see Sect. 3.1.1).

A description languageL is a set of subgroups that are of potential

interest, and is fixed in advance by the user before analyzing the

dataset. It could be a superset or a subset of the subgroups that

actually appear in the dataset, and it expresses the constraint that

only subgroups in the description language should be considered

in the mining process. For example, given some integerm, one may

consider the description language of all and only the subgroups

composed of up tom conjunctions of equality conditions on the

attributes.

1
We use |B | to denote the size of a bag B , i.e., the number of elements in B , counting
repeated elements multiple times.

2
Scheffer and Wrobel [25] use the term statistical unusualness. We choose to drop the

adjective to avoid confusion with statistical significance.

3.1.1 Quality measures. A quality measure for the subgroups
in L on a dataset D is a function ϕD : L → R which assigns a

numerical score to each subgroupA ∈ L based on its generality and

unusualness. In this work we consider the most popular subgroup

quality measures [10], which differ from each other for the relative

weight given to generality and unusualness.

Definition 3.1 ([8, 18, 32]). Let p ∈ {1/2, 1, 2}. The p-quality of a
subgroup A on a dataset D is

q(p)
D
(A) = (gD (A))p uD (A) .

The 1-quality is also known as Weighted Relative Accuracy
(WRAcc).

3
The 1/2-quality is proportional to the z-score4 for the

statistic |CD (A)|uD (A), which can be used to test whether a sub-

group shows statistical association with the target variable. Thus,

the 1/2-quality can be used as a proxy for the statistical significance

of the subgroupA [8, 25, 29]. The domainYT of the target attribute

is Boolean, thus q(p)
D
(A) ∈ [−1, 1] for any subgroup A. There exist

variants of the p-qualities that consider the absolute value of the
unusualness [25]. MiSoSouP can be easily adapted to work with

such measures.

3.1.2 Subgroup discovery task. Fix p ∈ {1/2, 1, 2}. Let LD be

the subset of L containing only the subgroups of L that actually

appear in D (i.e., those with generality strictly greater than zero).

We do not assume to know LD : it is only needed for the following

definition. Assume to sort the subgroup in LD in decreasing order

according to their p-quality in D, ties broken arbitrarily. Let k > 0

be an integer and let r(p)
D
(k) be the p-quality of the k-th subgroup

in the sorted order.

Definition 3.2. The subgroup discovery task consists in extracting

the set TOPp (k ,D) of the top-k subgroups in LD w.r.t. the p-quality

in D , i.e., the set of subgroups with p-quality at least r(p)
D
(k):

TOPp (k ,D) =
{
A ∈ LD : q(p)

D
(A) ≥ r(p)

D
(k)

}
.

TOPp (k ,D) may contain more than k elements when many

subgroups have p-quality equal to r(p)
D
(k).5

A variant of the task allows the user to specify a constraint on the

minimum generality of returned subgroups. MiSoSouP can handle

this case with minor modifications.

3.1.3 Approximations. We want to obtain an ε-approximation
to the set TOPp (k ,D) from a small random sample of the dataset,
where ε ∈ (0, 1) is an user-defined parameter that controls the

maximum acceptable error. Formally this concept is defined as

follows.

Definition 3.3. Let ε ∈ (0, 1). An ε-approximation to TOPp (k ,D)

is a set B of pairs (A,qA) where A is a subgroup and qA is a value

in [−1, 1], and B is such that:

3
Van Leeuwen and Ukkonen [29] denote the 1/2-quality as “WRAcc”, but all other

references we found (e.g., [5, 12]) use this name to denote the 1-quality.

4
The z-score for a test statistic X is (X − E[X ])/σX , where E[X ] is the expectation

and σX is the standard deviation of X (under the null hypothesis). For subgroups,

under the null hypothesis of no association of a subgroup with the target variable, the

z-score is ( |CD (A) |µD (A) − |CD (A) |µ(D))/
√
CD (A)µ(D)(1 − µ(D)).

5
This definition of the task is therefore slightly different from the one given in [25,

Definition 1], where the size of TOPp (k , D) is limited to exactly k elements.



(1) for any A ∈ TOPp (k ,D), there is a pair (A,qA) ∈ B; and

(2) there is no pair (A,qA) ∈ B such that

q(p)
D
(A) < r(p)

D
(k) − ε ; and

(3) for each pair (A,qA) ∈ B, |q(p)
D
(A) − qA | ≤ ε/4.

MiSoSouP computes (with high probability) an ε-approximation

from a random sample of the dataset.

An ε-approximation can act as a set of candidates for

TOPp (k ,D), as it contains a pair (A,qA) for each subgroup A in

this set. Scheffer and Wrobel [25, Definition 2] present a slightly

different definition of approximation. Such an approximation is not
a set of candidates for TOPp (k ,D), and in particular its intersec-

tion with this set may be empty. On the other hand, if we sort the

pairs in an ε-approximation by decreasing order of their second

component, ties broken arbitrarily, the set of the subgroups in the

first k pairs according to this order is an approximation in the sense

defined by Scheffer and Wrobel [25]. The choice of ε , similar to the

choice of k in Def. 3.2 must be informed, at least in part, by domain

knowledge. The quantity 1 − µ(D) can act, in some sense, as an

upper bound to the possible choice of ε , as no subgroup can have

1-quality greater than this quantity. Approximations guaranteeing

a multiplicative bound on the error are also possible and we will

discuss them in an extended version of this work.

3.2 Pseudodimension
We now introduce the main concepts and results on VC-
dimension [31] and pseudodimension [19], specializing some of them

to our settings.
6

3.2.1 VC-dimension. LetW be a finite domain and let R ⊆ 2
W

be a collection of subsets of W, where 2
W

is the set of all subsets

of W. We call R a rangeset on W, and call its members ranges.
The set A ⊆ W is shattered by R if {R ∩ A : R ∈ R} = 2

A
. The

VC-dimension VC(W,R) of (W,R) is the size of the largest subset
ofW that can be shattered by R.

3.2.2 Pseudodimension. Pseudodimension [19] is an extension

of VC-dimension [31] to real-valued functions, defined as follows.

Let F be a family of functions from a finite domain H onto

[a,b] ⊂ R. In this workH will be the datasetD, and F will contain

one function fA for each subgroupA ∈ L (see Sect. 4.1.1). Consider,

for each f ∈ F , the subset Rf ofH × [a,b] defined as

Rf = {(x , t) : t ≤ f (x)} .

Let

F + = {Rf , f ∈ F },

be a rangeset on H × [a,b]. The pseudodimension PD(F ) of F is

the VC-dimension of (H × [a,b], F +) [1, Sect. 11.2]:

PD(F ) = VC(H × [a,b], F +) .

3.2.3 Uniform convergence. Let S = {x1, . . . , xℓ} be a bag of

elements of H , sampled independently and uniformly at random,

with replacement. For each f ∈ F , define

mH(f ) =
1

|H |

∑
x ∈H

f (x) and mS(f ) =
1

ℓ

ℓ∑
i=1

f (xi ) .

6
For an in-depth discussion of these topics see, e.g., the books by Shalev-Shwartz and

Ben-David [26] and by Anthony and Bartlett [1].

We callmS(f ) the empirical average of f on S. It holds E[mS(f )] =
mH(f ). The following result connects an upper bound to the pseu-

dodimension of F to the number of samples needed to simultane-

ously approximate all the expectations of all the functions in F

using their sample averages.

Theorem 3.4 ([13]). Let PD(F ) ≤ d . Fix ξ ,η ∈ (0, 1). When S is
a collection of

|S| =
(b − a)2

ξ 2

(
d + log

1

η

)
(1)

elements sampled independently and uniformly at random with re-
placement fromH , then, with probability at least 1−η over the choice
of S, it holds

|mH(f ) −mS(f )| < ξ , for every f ∈ F .

The following two lemmas by Riondato and Upfal [23, Lemmas

3.7 and 3.8] are useful when proving upper bounds to the pseudodi-

mension of a family of functions.

Lemma 3.5. If B ⊆ H × [a,b] is shattered by F +, it may contain
at most one element (d , x) ∈ H × [a,b] for each d ∈ H .

Lemma 3.6. If B ⊆ H ×[a,b] is shattered by F +, it cannot contain
any element in the form (d ,a), for any d ∈ H .

4 ALGORITHMS
In this section we present MiSoSouP, our suite of algorithms to

compute ε-approximations of TOPp (k ,D). We present only the

case for p = 1, and discuss the variants for the other p-qualities in
the supplementary materials [24].

4.1 MiSoSouP for 1-quality
We start by introducing a family P of functions which we use to

give a novel expression for the 1-quality of a subgroup. We then

present a sufficient condition for extracting an ε-approximation

from a sample, and derive bounds to the sample size sufficient to

ensure that the condition holds with high probability. Finally ,we

describe the algorithm.

4.1.1 A novel formulation of the 1-quality. The family P con-

tains one function ρA from D to {−µ(D), 0, 1 − µ(D)} for each

subgroup A ∈ L, defined, for t ∈ D, as:

ρA(t) =


1 − µ(D) if t ∈ CD (A) and t .T = 1

−µ(D) if t ∈ CD (A) and t .T = 0

0 otherwise

.

We assume to know the exact value of µ(D), which is a standard

and reasonable assumption (made also by Scheffer andWrobel [25]),

since µ(D) can be computed with a very quick scan of the target

attribute on D, or kept up-to-date while collecting the data.

The 1-quality of a subgroup A can be expressed as the average

over the transactions in the dataset of the function ρA:

mD (ρA) =
1

|D|

∑
t ∈D

ρA(t)

=
1

|D|
((1 − µ(D))µD (A)|CD (A)| − µ(D)|CD (A)|(1 − µD (A)))

=
|CD (A)|

|D|
(µD (A) − µ(D)) = gD (A)uD (A) = q(1)

D
(A) . (2)



This equivalence is a novel insight of crucial importance to enable

the efficient estimation of the 1-quality from a sample of the dataset.

Let now S = {t1, . . . , tℓ} be a collection of transactions sampled

uniformly and independently at random with replacement from D.

It holds, following the same steps as in (2), that

mS(ρA) =
1

ℓ

ℓ∑
i=1

ρA(ti ) = gS(A) (µS(A) − µ(D)) .

Note that this quantity is different from q(1)
S
(A), as it uses µ(D)

rather than µ(S). As mentioned earlier, it is reasonable to assume

knowledge of µ(D). We define the approximate 1-quality of A on S

as

q̃(1)
S
(A) = mS(ρA) .

4.1.2 Sufficient condition for an ε-approximation. We now show

a condition on the sample S that is sufficient to allow the com-

putation of an ε-approximation of TOP1(k ,D) from S. Assume to

sort the subgroups in L in decreasing order by their approximate

1-quality onS, ties broken arbitrarily. Let r̃(1)
S
(k) be the approximate

1-quality on S of the k-th subgroup in this order.

Theorem 4.1. If S is such that

|q̃(1)
S
(A) − q(1)

D
(A)| ≤

ε

4

for every A ∈ L, (3)

then the set

B =
{(
A, q̃(1)

S
(A)

)
: q̃(1)

S
(A) ≥ r̃(1)

S
(k) −

ε

2

}
(4)

is an ε-approximation to TOP1(k ,D).

Proof. Equation (3) holds in particular for subgroups appearing

in the pairs in B. Thus, B satisfies Property 3 from Definition 3.3.

It holds

r̃(1)
S
(k) ≥ r(1)

D
(k) −

ε

4

(5)

because all the subgroups in TOP1(k ,D), which are at least k , have,

from (3), approximate 1-quality in S at least r(1)
D
(k) − ε/4.

Another consequence of (3) is that

r̃(1)
S
(k) ≤ r(1)

D
(k) +

ε

4

(6)

because only subgroups with exact 1-quality in D strictly greater

than r(1)
D
(k) can have an approximate 1-quality in S strictly greater

than r(1)
D
(k) + ε/4, and there are only at most k − 1 such subgroups.

It then holds from (6) and (3) that

q̃(1)
S
(Z ) ≥ r̃(1)

S
(k) −

ε

2

for all Z ∈ TOP1(k ,D) .

Thus B satisfies Property 1 of Definition 3.3.

Let now A be any subgroup with q(1)
D
(A) < r(1)

D
(k) − ε . It follows

from (3) that

q̃(1)
S
(A) ≤ r(1)

D
(k) − 3ε/4,

and using (5) we get

q̃(1)
S
(A) < r̃(1)

S
(k) − ε/2,

hence

(
A, q̃(1)

S
(A)

)
< B, as required by Property 2 of Definition 3.3.

□

4.1.3 Loose bounds to the sufficient sample size. Intuition cor-

rectly suggests that if the sample S is large enough, then with high

probability over the choice ofS,S satisfies the condition in (3), thus

allowing the computation of an ε-approximation of TOP1(k ,D)

from S. To warm up, and as a baseline, we first present a loose

bound on how large S should be for the above to happen.

Theorem 4.2. Let δ ∈ (0, 1), ε ∈ (0, 1), and k ≥ 1. Let S be a
collection of

|S| ≥
16

ε2

(
ln |LD | + ln

2

δ

)
(7)

transactions sampled uniformly at random with replacement from D.
With probability at least 1 − δ (over the choice of S), the set

B =
{(
A, q̃(1)

S
(A)

)
: q̃(1)

S
(A) +

ε

2

≥ r̃(1)
S
(k)

}
is an ε-approximation to TOP1(k ,D).

The proof is in the supplementary material [24]. It uses Hoeffd-

ing’s inequality [6] and the union bound [16, Lemma 1.2].

The quantity in (7) is a loose upper bound to the sample size

sufficient to probabilistically obtain an ε-approximation, due to the

use of the union bound. It is also somewhat intuitive that the sample

size should not depend on just the size of LD , but on a quantity

that better describes the relationship between the language and

the dataset, as will be the case for the sample size used by MiSo-
SouP. Another drawback is that the sample size in (7) can only be

computed when the size of LD is known, which is almost never

the case. A loose upper bound to |LD | can be computed with a full

scan of the dataset, which is potentially expensive (see details in

Sect. 5). The sample size used byMiSoSouP, presented next, does

not suffer from these downsides.

4.1.4 Bounds to the pseudodimension and to the sample size.
In this section we present a novel upper bound to the number

of samples needed to satisfy the condition in (3), and therefore

compute an high-quality approximation of TOP1(k ,D). It relies on

the following bound to the pseudodimension [19] (see Sect. 3.2) of

the family P introduced in Sect. 4.1.1.

Theorem 4.3. Let d be the maximum number of subgroups from
L that may appear in a transaction ofD. Then, the pseudodimension
PD(P) of P satisfies:

PD(P) ≤ ⌊log
2
d⌋ + 1 .

We need some intermediate results before proving this theorem.

Define, for every subgroup A ∈ L, the range

RA = {(t , x) : t ∈ D and x ≤ rA(t)},

and let R = {RA,A ∈ L} be a rangeset on D × [−µ(D), 1 − µ(D)].

Lemma 3.6 tells us that only subsets of D × (−µ(D), 1 − µ(D)]

may be shattered by R. The following lemmas further restrict the

collection of sets that may be shattered.

For any x ∈ (−µ(D), 1 − µ(D)] let

c(x) =
{

1 − µ(D) if 0 < x ≤ 1 − µ(D)

0 if − µ(D) < x ≤ 0

.

Lemma 4.4. A set B ⊆ D × (−µ(D), 1 − µ(D)] is shattered by R

if and only if the set

B′ = {(t , c(x)) : (t , x) ∈ B}



is also shattered by R. Note that |B | = |B′ |.

Proof. It follows from the definition of RA, A ∈ L, that (t , x)
belongs to all and only the RA’s that (t , c(x)) belongs to. Hence if
B is shattered then the same ranges that shatter it also shatter B′

,

and vice versa.

The equality |B | = |B′ | follows from 1) the fact that clearly it is

impossible that |B′ | > |B |; and 2) Lemma 3.5 as it ensures that if

B is shattered then it cannot contain more than a single element

(t ,y) for a fixed t ∈ D and some y ∈ (−µ(D), 1 − µ(D)], hence it

is impossible that two or more elements of B are mapped by c(·) to
the same element of B′

. □

Lemma 4.5. Let t ∈ D be any transaction such that t .T = 0. No
B ⊆ D × {0, 1 − µ(D)} such that (t , 1 − µ(D)) ∈ B can be shattered
by R.

Proof. There is no subgroupA ∈ L such that (t , 1−µ(D)) ∈ RA,
thus, for any B containing (t , 1 − µ(D)), it is impossible to find an

A ∈ L such that RA ∩ B = {(t , 1 − µ(D))}, hence B cannot be

shattered. □

Lemma 4.6. Let t ∈ D be any transaction such that t .T = 1. No
B ⊆ D × {0, 1 − µ(D)} such that (t , 0) ∈ B can be shattered by R.

Proof. The element (t , 0) belongs to RA for any A ∈ L, so for

any B containing (t , 0), it is impossible to find an A ∈ L such that

RA ∩ B = ∅, hence B cannot be shattered. □

It follows from Lemmas 3.6, 4.4, 4.5, and 4.6 that, to prove The-

orem 4.3, we can focus our attention only on trying to shatter

subsets of D × [−µ(D), 1 − µ(Ds)] containing elements that are

either in the form (t , 1 − µ(D)) with t .T = 1, or in the form (t , 0)
with t .T = 0. The two following lemmas show upper bounds to the

sizes of such subsets that can be shattered by R. Theorem 4.3 is

then an immediate consequence.

Lemma 4.7. Let B ⊆ D × {0, 1 − µ(D)} be a set that is shattered
by R and such that B contains an element (t , 1 − µ(D)), for some
t ∈ D. Then it must be

|B | ≤ ⌊log
2
d⌋ + 1,

for d as in Theorem 4.3.

Proof. The proof is in part inspired by the one for [21, Theo-

rem 4.5]. Consider one of the elements in the form (t , 1 − µ(D))

belonging to B. By hypothesis there is at least one such element.

Let us denote it as a = (t , 1 − µ(D)).

Denote the 2
|B |−1

non-empty subsets of B containing a asCi , 1 ≤

i ≤ 2
|B |−1

, labelling them in an arbitrary order. Since B is shattered,

for each of theCi ’s there must be anAi such thatRAi ∩B = Ci . Since

Ci , Cj for each i , j, 1 ≤ i , j ≤ 2
|B |−1

, it must hold RAi , RAj .

The element a belongs to each RAi , 1 ≤ i ≤ 2
|B |−1

. From Lemma 4.5

it follows that, since B is shattered, then it must be t .T = 1. Thus

the element a belongs to all and only the ranges RZ for Z ∈ L such

that t ∈ CD (Z ). There are at most d such Z ’s, hence it must be

2
|B |−1 ≤ d . □

Lemma 4.8. Let B ⊆ D × {0, 1 − µ(D)} be a set that is shattered
by R and such that B contains an element (t , 0), for some t ∈ D. Then
it must be

|B | ≤ ⌊log
2
d⌋ + 1,

for d as in Theorem 4.3.

Proof. Consider one of the elements in the form (t , 0) that be-
long to B. By hypothesis there is at least one such element. Let us

denote it as a = (t , 0). The proof is similar to the one for Lemma 4.7,

but with one profound difference, i.e., we essentially consider the

subsets of B that do not contain a.
Denote the 2

|B |−1
subsets of B not containing a as Ci , 1 ≤ i ≤

2
|B |−1

, labelling them in an arbitrary order. Note that there must be

an i such thatCi = ∅. Since B is shattered, for each of theCi ’s there
must be a subgroup Ai such that RAi ∩ B = Ci . Since Ci , Cj for

each i , j, 1 ≤ i , j ≤ 2
|B |−1

, it must hold RAi , RAj . The element

a does not belong to any RAi , 1 ≤ i ≤ 2
|B |−1

. From Lemma 4.4 it

follows that, since B is shattered, then it must be t .T = 0. Thus the

element a does not belong only to the ranges RZ for Z ∈ L such

that t ∈ CD (Z ). There are at most d such Z ’s, hence it must be

2
|B |−1 ≤ d . □

It is common to choose L to be the set of subgroups involving

up to c conjunctions of simple equality conditions on the attributes,

for some c ≥ 1. The following corollary is a reformulation of The-

orem 4.3 using the maximum number of subgroups from L that

may appear in a transaction of D for such cases.

Corollary 4.9. LetC be the number of description attributes inD
(i.e., not counting the target attribute). Let L be the set of subgroups
of conjuctions of equality conditions on up to c attributes, for some
1 ≤ c ≤ C . Then

PD(P) ≤

⌊
log

2

c∑
i=1

(
C

i

)⌋
+ 1 . (8)

We conjecture that these bounds to the pseudodimension are

strict, in the sense that there are datasets attaining the bounds. We

will investigate this conjecture in the extended version of this work.

By combining Theorem 4.3 with Theorem 3.4 we obtain the

following result.

Theorem 4.10. Let δ ∈ (0, 1), ε ∈ (0, 1), and k ≥ 1. Let d as in
Theorem 4.3. Let

S =
16

ε2

(
⌊log

2
d⌋ + 1 + ln

1

δ

)
. (9)

The probability that a collection S of S transactions sampled indepen-
dently and uniformly at random with replacement from D satisfies
(3) is at least 1 − δ .

The improvement of (9) over (7) is evident: ⌊log
2
d⌋ + 1 is usu-

ally much much smaller, potentially orders of magnitude so, than

ln |LD |.

4.1.5 The algorithm. We now have all the ingredients to de-

scribe and analyze MiSoSouP-1, our algorithm for extracting, with

probability at least 1 − δ (over the runs of the algorithm), an ε-
approximation to TOP1(k ,D). The input of the algorithm is the

tuple (D,k , ε , δ ).



MiSoSouP-1 starts by creating the sample S by drawing S trans-

actions independently and uniformly at random with replacement

from D, for S as in (9). An exact algorithm for subgroup discovery

is used to extract from S the set B defined in (4). Any exact algo-

rithm can be used for the discovery step, but it needs to be slightly

modified to use q̃(1)
S
(A) as measure for the interestingness of a sub-

group A, instead of q(1)
S
(A). This modification is straightforward.

The set B is then returned in output. By combining Theorem 4.1

with Theorem 4.10 we obtain the following result on the quality

guarantees of MiSoSouP-1.

Theorem 4.11. With probability at least 1 − δ (over its runs),
MiSoSouP-1 outputs an ε-approximation to TOP1(k ,D).

5 EXPERIMENTAL EVALUATION
We now discuss our experimental evaluation to assess the perfor-

mances of MiSoSouP. We report here a subset of the results for

p = 1. Additional and qualitatively similar results for the other

measures are available in the supplementary materials [24].

5.1 Goals
Our experiments have two goals: 1) evaluate the speed-up of Mi-
SoSouP w.r.t. sampling-based approximation algorithms offering

the same quality guarantees; and 2) evaluate the quality of the

approximations returned by MiSoSouP, in terms of the accuracy of

the estimates of the quality of the returned subgroups, and of the

number of returned subgroups.

5.2 Baselines
We compare the performances of MiSoSouP against a baseline

algorithm UB.7 Like MiSoSouP, UB computes, with probability

at least 1 − δ , an ε-approximation to TOPp (k ,D) by analyzing

a sample of the dataset. The only difference between MiSoSouP
and UB is that UB uses, as sample size, the r.h.s. of (7) (or similar

equations for p , 1). We use UB-1 to denote the variant of UB for

1-quality. As is evident from (7), UB requires, to compute its sample

size, the number of subgroups in L that actually appear in D or

an upper bound to such number. An upper bound can be computed

by considering the size of the (effective) domains of the columns

in the dataset, and taking the sum, over all r -subsets C of columns,

for r from 1 to some maxlen, of the products of the sizes of the

column domains in C . Computing the sizes of the column domains

requires a linear scan of the dataset. Despite the fact that this step

can be relatively expensive and its cost grows with the size of the

dataset, we do not include the time for such computation in the

runtime of UBwe report, therefore favoringUB in our comparisons.

Note that MiSoSouP relies on (8) to compute the upper bound d to

the pseudodimension used in (9) to obtain its sample size, and the

cost of evaluating the r.h.s. of (8) is essentially nil, as all values are

known by MiSoSouP, since L and thus c are fixed in advance, and

the number of columns of D is an immediately available quantity.

We do not compare MiSoSouP with algorithms that mine the

whole dataset and output the exact collection TOPp (k ,D) because

MiSoSouP (and also UB) have sample sizes that are independent on

7UB was not presented before in the literature. We introduce it only for comparison

with MiSoSouP, which, as we will see, offers several practical advantages.

Dataset Size Attributes Max. Length

Car 6912 ×104 6 4

Mushroom 32496 ×104 22 4

Tic-Tac-Toe 3832 ×104 9 5

Table 1: Characteristics of the datasets

the size of the dataset, while an exact algorithm would take time

proportional to this quantity. As a result, on modern-sized datasets,

an exact algorithm is always much slower than a sampling-based

algorithm. We also do not to compare against GSS [25] because the
algorithm does not actually offer the claimed guarantees (see the

supplementary materials [24]). Additionally, an implementation is

not available.

5.3 Datasets and languages
We use datasets from the UCI repository [14]. Since these datasets

are quite small for today’s standards, we replicate them 20,000

times (i.e., each transaction is copied 20,000 times) and then shuffle

the order of the transactions in the replicated copy. This way, we

obtain significantly larger datasets while preserving the distribution
of thep-qualities of the subgroups appearing in the original datasets.
This approach does not change the search space of any algorithm

and does not give any advantage to MiSoSouP over UB. Table 1
shows the descriptive statistics of the datasets we used. We consider

the description language L of subgroups of up to “Max. Length”

conjunctions of equality conditions.

5.4 Implementation and environment
We implemented MiSoSouP and UB in C++17. The implementa-

tion uses a simple exhaustive search algorithm for extracting the

subgroups from the sample (any algorithm can be used for this

step, we just found it more practical to write our own implementa-

tion than to modify an existing implementation of a more efficient

algorithm). We run our experiments on a cluster of GNU/Linux ma-

chines, except for the timing experiments, which were performed

on a machine with an AMD Phenom
TM

II X4 955 processor and

16GB of RAM, running FreeBSD 12. The code is included in the

supplementary materials [24].

5.5 Parameters
We report results for k ∈ {10, 50, 100, 200, 500, 1000, 2000}, ε ∈

{0.05, 0.02, 0.01, 0.0075}, and for δ = 0.1. We tested different values

for δ , but given that both MiSoSouP and UB have (the same) loga-

rithmic dependence on δ , varying δ has limited quantitative effect

and no qualitative effect. We runMiSoSouP and UB five times for

each combination of parameters: the results were extremely stable

and we report them for a randomly chosen run among the five.

5.6 Results
We first show the results on runtime and sample sizes (Sect. 5.6.1),

then discuss the accuracy of the estimates of the 1-qualities obtained

byMiSoSouP-1 (Sect. 5.6.2), and finally analyze the number of false

positives it reports (Sect. 5.6.3).



Absolute error (×104) (for k = 1000)

Dataset ε |S|

Reduction

w.r.t.

UB-1
Runtime

(s)

Reduction

w.r.t.

UB-1 Min. 1
st
Q. Median 3

rd
Q. Max. ε/4

Car

0.05 53137

-25.07%

1.50 -1.5% < 0.01 0.32 0.76 1.88 25.50 125

0.02 332104 2.13 -10.55% < 0.01 0.14 0.32 0.73 8.20 50

0.01 1328414 4.42 -17.68% < 0.01 0.07 0.15 0.36 10.78 25

0.0075 2361625 6.67 -20.16% < 0.01 0.05 0.11 0.26 4.98 18.75

Mushroom

0.05 104337

-11.98%

88.66 -8.64% 0.17 8.22 13.35 21.09 45.75 125

0.02 652104 467.97 -13.86% 0.40 5.63 6.56 8.45 22.86 50

0.01 2608414 1816.05 -11.45% 0.05 2.53 4.27 4.63 7.45 25

0.0075 4637180 3274.01 -10.70% 0.05 3.41 3.77 4.43 8.85 18.75

Tic-Tac-Toe

0.05 72337

-17.35%

2.34 -12.96% < 0.01 0.87 2.04 4.11 48.88 125

0.02 452104 9.72 -16.66% < 0.01 0.34 0.77 1.53 28.58 50

0.01 1808414 35.36 -17.47% < 0.01 0.32 0.68 1.21 7.86 25

0.0075 3214958 59.31 -19.72% < 0.01 0.29 0.64 1.11 5.14 18.75

Table 2: Sample size, runtime, and accuracy (absolute error) evaluation forMiSoSouP-1

5.6.1 Sample size reduction and speed-up. We compare the num-

ber of samples used by MiSoSouP-1 and by UB-1 as ε varies. In
both cases, the sample size is independent from k : k enters into play

only when computing the final output, so it can be chosen after the

“sampling phases” of the algorithms have run. The results are pre-

sented in the 3
rd

and 4
th

column from the left of Table 2. W.r.t. the

whole dataset (whose size is reported in Table 1),MiSoSouP-1 looks
at a small fraction of the transactions, and this quantity does not
grow as the dataset grows, which is one of the main advantages of

sampling-based approaches.
8 MiSoSouP-1 achieves a very large

reduction in the sample size w.r.t. UB-1 (only a single number is re-

ported for each dataset because the two sample sizes have the same

dependency on ε and δ , and do not depend on k). The reduction
is extremely significant because, especially when ε is small, UB-1
would require to analyze a sample larger than the original dataset,

defeating the whole purpose of sampling, whileMiSoSouP-1 would
still shine.

9
Hence, MiSoSouP-1 can be used with success in sit-

uations where UB-1 would be useless. There are other scenarios

where UB-1 would not work butMiSoSouP-1 would: if given just a

sample and no information on the size of the language, UB-1 would
not be able to compute the sample size, whileMiSoSouP-1 would
have no issues. Thus,MiSoSouP-1 requires fewer transactions than
UB-1, while being more flexible.

The runtime of MiSoSouP-1 and the reduction over UB-1 are
reported in the 5

th
and 6

th
columns of Table 2. We remark once

again that the runtime of UB-1 did not include the time to compute

an upper bound to the size of language, which on large datasets

is significant. Thus the improvement of MiSoSouP-1 over UB-1
is actually even larger than reported. At small sample sizes (i.e.,

large values of ε), both algorithms have fixed costs that dominate

8
This property of sampling-based approached is also the reason why we did not

perform evaluate the scalability of MiSoSouP as the dataset size grows.

9
For extremely small values of ε and only moderately large datasets, MiSoSouP-1
would also require a sample size larger than the datasets. This weakness is implicit in

all sampling-based approaches, but for MiSoSouP-1, it appears at much smaller values

of ε than for UB-1.

over the part of the running time that depends on the size of the

sample, thus the reduction inMiSoSouP-1’s runtime w.r.t. UB-1’s
is not proportional to the reduction in the sample size. The sample-

size-dependent costs dominate when ε is small (larger sample sizes)

and in these cases the speed-up becomes essentially equal to the

reduction in the sample size.

5.6.2 Accuracy. We evaluate the accuracy of the output of Mi-
SoSouP-1 by measuring, for each subgroup A in the output, the

absolute error on the sample S: err(p)
S

(A) =
���q̃(p)
S

(A) − q(p)
D
(A)

���. The
quality guarantees of MiSoSouP-1 ensure that, with probability at

least 1−δ , the absolute error is bounded by ε/4 for all subgroups. A
first important result is that the above was true in all the thousands
of runs of MiSoSouP-1 we performed, i.e., not just with probability

1 − δ . Hence MiSoSouP-1 has, in practice, even higher confidence

than it guarantees theoretically. We will further comment later on

this aspect. In the six rightmost columns of Table 2 we report the

minimum, first quartile, median, third quartile, and maximum ab-

solute error, and the value of ε/4 for comparison. We report results

for k = 1000 (the full table for all values of k is available in the

supplementary materials [24], with qualitatively similar results).

We can see that not only the maximum absolute error was approx-

imately between two to seven times smaller than the maximum

allowed (ε/4), but the majority of the distribution of the error (over

the subgroups) is highly concentrated around values that are often

orders of magnitude smaller, with the median being at times even

more than 100 times smaller than ε/4. Additionally we see how, as ε
decreases, the distribution of the error becomes more concentrated,

with the maximum values decreasing faster than the third quartiles

and the medians.

A possible explanation for the fact that the estimation of the

1-qualities is much better than what is guaranteed by the theory

is that the analysis uses an upper bound to the pseudodimension,

which itself is a worst-case measure of complexity. This looseness is



ε k |TOP1(k ,D)| FP

% of all

Acceptable FP

0.05

10 10 29 19.72

50 50 120 22.64

100 100 232 25.86

200 200 399 32.83

500 546 764 34.80

1000 1013 850 17.63

2000 2004 4030 15.26

0.02

10 10 14 56.00

50 50 48 57.83

100 100 57 40.42

200 200 141 51.64

500 546 361 59.66

1000 1013 284 42.83

2000 2004 949 31.96

0.01

10 10 2 14.28

50 50 17 36.95

100 100 26 45.61

200 200 46 34.07

500 546 67 18.55

1000 1013 129 41.88

2000 2004 455 48.50

0.0075

10 10 2 100.00

50 50 8 34.78

100 100 26 78.78

200 200 35 35.00

500 546 47 16.60

1000 1013 92 46.23

2000 2004 246 36.71

Table 3: Output evaluation forMiSoSouP-1 on Mushroom

somewhat inevitable, but it suggests that there is room for improve-

ment in the analysis. We plan to investigate the use of Rademacher

averages [11] to obtain tighter sample-dependent bounds to the

deviations of the sample qualities from their exact values.

5.6.3 Output properties. The set of subgroups returned byMi-
SoSouP-1 is a superset of TOPp (k ,D). This was always the case in

all the runs, so the recall of MiSoSouP-1 is, in practice, 100%.MiSo-
SouP-1 therefore effectively exceeds the theoretical guarantees it

offers. As for the precision, we must remark that a sampling-based

algorithm can obviously not guarantee 100% precision, especially

if it gives 100% recall likeMiSoSouP-1 does.
Nevertheless, MiSoSouP-1 guarantees that False Positives (FP),

i.e., subgroups not in TOPp (k ,D)) that may be included in the

output, can only be among those subgroups with 1-quality in D at

least r(1)
D
(k) − ε , i.e., at most ε less than the 1-quality of the top-k-

th subgroup in D. The number of these “acceptable” FP depends

on the distribution of the 1-qualities in the dataset, and cannot

be controlled by the algorithm. Thus, the precision may be very

low if there are many (potentially ≫ k) subgroups that would be

acceptable FP, and these FP are the price to pay for the speed-up

in analyzing the dataset. It is arguable that in these cases the exact

choice of k becomes somewhat arbitrary, because there are many

subgroups with p-qualities very close to each other. In any case,

the output of MiSoSouP-1 is a superset of TOP1(k ,D) and can be

refined to obtain this set with a fast linear scan of the dataset.

We report in Table 3, for the Mushroom dataset, the number of

FP in the output and to what percentage of the acceptable FP that

number corresponds to. The tables for other datasets are available

in the supplementary materials [24]. As expected, for a fixed value

ofk , the number of FP included in the output decreases as ε becomes

smaller, but notice that the percentage may not decrease because

the set of acceptable FP changes with ε . The absolute number of

FP tends to grow with k , because the number of acceptable FP also

tends to grow with k , which is a consequence of the power-law

distribution of the qualities of the subgroups.

In the end, the amount of FP is either a small number (either in

absolute terms or relatively to k) or a relatively small fraction of

the total number of acceptable FP. This fact can be explained by the

“excessive” accuracy of MiSoSouP-1 in estimating the 1-quality of

the subgroups, as discussed in Sect. 5.6.2. As mentioned,MiSoSouP-
1 gives no guarantees that only a small subset of the acceptable

FP would be included in the output, so the fact that in most cases

less than half of them are actually present is a witness to the good

performances of the algorithm.

6 CONCLUSIONS
We introducedMiSoSouP, the first family of algorithms based on

random sampling that compute probabilistically-guaranteed high-

quality approximations of the collection of the top-k most interest-

ing subgroups in a dataset. Our analysis relies on pseudodimension,

a fundamental concept from statistical learning theory. This con-

nection is novel for subgroup discovery.

Our experimental evaluation shows that MiSoSouP requires

much smaller sample sizes than state-of-the-art solutions to obtain

approximations with the same guarantees, therefore providing the

first viable tool to efficiently identify the most interesting subgroups

for ever-more-massive datasets.

Our algorithms hinge on defining quality measures as averages

of specific functions. This approach can be used in concert with

Rademacher averages to design progressive-sampling methods for

subgroups discovery, as done for other mining tasks [22]. We will

investigate this direction in the near future.
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