
Technical
Report

TWOSIGMA INVESTMENTS
March 2, 2016
www.twosigma.com
NEWYORK HOUSTON
LONDON HONGKONG

TSTR-2016-1

Introduction toCompiler
Generation Using HACS Kristoffer H. Rose

Two Sigma Investments

ABSTRACT
Higher-order Attribute Contraction Schemes—or HACS—is a language for programming compilers. With
HACS it is possible to create a fully functional compiler from a single source file. This document explains how
to get HACS up and running, andwalks through the code of a simple example with each of themain stages of
a compiler as specified in HACS: lexical analysis, syntax analysis, semantic analysis, and code generation.
Contents: 1. Introduction (2), 2. Getting Started (3), 3. Lexical Analysis (5), 4. Syntax Analysis (7), 5. Abstract
Syntax and Recursive Translation Schemes (9), 6. Semantic Data, Operators, and Evaluation (14),
7. Synthesizing Information (17), 8. Full Syntax-Directed Definitions with Environments (20), 9. Higher
Order Abstract Syntax (27), 10. Compile-time Computations (30), 11. Examples (34), A. Manual (40),
B. Common Errors (44), C. Limitations (46).

This document describes HACS version 1.1.20 available from github.com/crsx/hacs.
HACS is © 2011, 2016 Kristoffer Rose and released under the Eclipse Public License 1.0.

Documentation is © 2011,2016 Kristoffer Rose and additionally licensed under CC BY 4.0.
Technical report is rebranded version of manual © 2016 Two Sigma Investments, LP, also licensed under CC BY 4.0.
Two Sigma and the Two Sigma logo are trademarks of Two Sigma Investments, LP (“Two Sigma”) andmay not be
reproduced or usedwithout express written permission.

This Technical Report is offered as-is and as-available, and Two Sigmamakes no representations or warranties of any kind
concerning the Technical Report, whether express, implied, statutory, or other. This includes, without limitation, warranties of title,
merchantability, fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or
absence of errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in full or in part, this
disclaimermay not apply to You. To the extent possible, in no event will shall the author(s), Two Sigma or any of its officers,
employees or representatives, be liable to You on any legal theory (including, without limitation, negligence) or otherwise for any
claims, losses, costs or damages of any kind, including direct, special, indirect, incidental, consequential, punitive, exemplary, or other
losses, costs, expenses, or damages arising out of the CC By-4.0 license or use of the Technical Report, including the information
contained herein, even if Two Sigma has been advised of the possibility of such losses, costs, expenses, or damages. Where a
limitation of liability is not allowed in full or in part, this limitationmay not apply to You.
The information contained herein is not intended to provide, and should not be relied upon for, investment, accounting, legal or tax
advice. The reader accepts all risks in relying on this document for any purpose whatsoever.

http://github.com/crsx/hacs
https://www.eclipse.org/legal/epl-v10.html
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

1. INTRODUCTION
Higher-order Attribute Contraction Schemes, or HACS, is a formal system for symbolic rewriting extendedwith
programming idioms commonly usedwhen coding compilers. HACS is developed as a front-end to the CRSX
higher-order rewriting engine [22], althoughHACS users need not be concernedwith the details of
higher-order rewriting (even if those are, in fact, most interesting).
A compiler written in HACS consists of a single specification filewith a series of formal sections, each

corresponding to a stage of the compiler. Each section is written in a formal style suitable for that stage of
the compiler. Specifically, HACS supports the following notations:
Regular Expressions. Used to describe how an input text is partitioned into tokens. The regular expressions

of HACS follow common conventions [2]. Section 3 gives details of this notation.
Context-Free Grammars. HACS uses a form of BNF [18] context-free grammars but tweaks the notation to

lookmore like templates, to allow for reuse of the notation in the subsequent rewrite rules. HACS
includes simplemechanics to allow for the formalization of the transformation from token stream to
abstract syntax. Details in Section 4.

Recursive Translation Schemes. Simple translation in general, and code generation in particular, is
traditionally achieved by recursive translation from one abstract form to another. HACS includes special
notations for defining such translations, described in Section 5, as well as a full programming language
for defining auxiliary so-called “semantic” sorts and operators, detailed in Section 6.

Attribute Grammars. Analyses can often be conveniently described in the style of syntax-directed
definitions [2], originally introduced as attribute grammars [14], which describe how properties
propagate through the abstract syntax tree. Section 7 details how the basic propagation rules work for
synthesized attributes. Section 8 explains how inherited attributes are integrated to enable the
encoding of full syntax-directed definitions.

Higher-order Abstract Syntax. Most programming languages use lexical scoping, and compiler internals as
well as target representations increasingly manipulate lexical scopes as part of their normal
operation [16, 17]. HACS supports this by providing explicit support for higher-order abstract syntax, and
integrates this with support for attributes withmappings from variables to values for modeling symbol
tables.

A typical compiler writtenwith HACS involvesmultiple instances of each of the above, as each used language,
including intermediate and target languages, is specified using grammars and has language-specific analyses,
with the transformations between them specified as translation schemes.
History. Many systems for writing programs that manipulate other programs, so-calledmeta-programming,
have emerged over the years. These range from generic specification languages, where the goal is not to
define how but only to declare the semantics of the programmanipulation, all the way to tools that support
specific aspects of program execution or compiler generation (a survey is beyond the scope of this
document).
One such systemwas CRSX [23] developed for industrial use at IBMResearch by a team led by the

author [24, 26, 25, 22]. CRSX is a language based on higher-order rewriting [10] combinedwith higher-order
abstract syntax (HOAS) [20], further extended for handling environments natively and using pluggable
parsers. The programming of the IBMDataPower XQuery compiler [8] using CRSX proved that the approach
can drastically reduce the development time of a compiler (the cited XQuery compiler was estimated to have
been developed in a quarter of the traditional development time) as well as resulting in a rather more
compact and high-level source program.
However, the CRSX notation, based on combinatory reduction systems [11, 13], which combines λ

calculus [5, 3] and term rewriting systems [12], has proven to be unwieldy for several reasons, first of all by
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 2

being quite different from standard notations used in compiler construction reference works [2]. Adding a
polymorphic sort system to CRSX following contraction systems [1] changed the system to be similar to
Inductive Type Systems [4]), which helped, but did not make the system easy enough to, for example, teach
compiler construction.
HACS is an attempt to remedy this situation by providing a front-end for CRSX that allows the use of

standard notations and concepts of (formal) programming language descriptions to directly program
compilers and other systems for manipulating code, as discussed above. HACS has been successfully used to
teach the graduate computer science compiler construction class at NewYork University [21].

Acknowledgements. The author would like to thank his coteacher at NYU, Eva Rose, our grader, José
Pablo Cambronero, as well as our students in the compiler construction class, for constructive comments to
and insightful questions onHACS.1 The implementation of HACSwould not have been remotely possible
without the CRSX team at IBM:MorrisMatsa, Scott Boag, and especially Lionel Villard, who suffered
through understanding and programming core fragments of the CRSX system that is used underneath HACS.
HACS owes its sanity to a collaboration with Cynthia Kop, both as an intern with theWatson team in 2011,
which created the polymorphic sort checker, in her thesis work [15], and in our continuing collaboration on
keeping the formal basis for the system up to date. Finally, the author would like to thank Two Sigma for
supporting this work, and in particular EliotWalsh for corrections and advice on the use of English.

Outline of this report. The remainder of this document introduces themost important features of the
HACS language by explaining the relevant parts of the included First.hx example (inspired by [2, Figure 1.7])
as well as several other minor examples. Section 2 shows how to install HACS and run the example, before
proceeding to the writing of specifications. Section 3 explains lexical analysis; Section 4 syntax analysis;
Section 5 basic recursive translation schemes; Section 6 semantic sorts, operations, and data; Section 7
bottom-up semantic analysis; Section 8 general syntax-directed definitions; and Section 9 higher order
abstract syntax. Section 10 addresses themanipulation of primitive values, and Section 11 provides several
examples of how everything can be combined. Finally, Appendix A has a referencemanual, Appendix B
explains some of the (still) cryptic error messages, and Appendix C lists some current limitations.
Bibliographic references are collected last.

2. GETTING STARTED
This section walks through the steps for getting a functional HACS installation on your computer.2
2.1 REQUIREMENTS. To run the HACS examples presented here you need a *nix system (including a shell
and the usual utilities) with these common programs: a Java development environment (at least Java 1.6 SE
SDK, with java and javac commands); and a standard *nix development setup including GNUMake, flex, and
C99 and C++ compilers. In addition, the setup process needs internet access to retrieve the CRSX base
system [22], JavaCC parser generator [27], and icuUnicode C libraries [9]. Finally, these instructions are
written for and tested on Ubuntu andDebian GNU/Linux systems using the bash shell; if your system is
different, some adaptationmay be needed.
2.2 COMMANDS (install HACS). If you have an old version of HACS installed, then it is best to remove it first
with a command like

$ rm -fr ~/.hacs hacs

1A special shout-out goes to John Downs for starting the Emacs M-x hacs-mode syntax highlighting mode [7] and Tyler Palsulich
for a HACSmode for Sublime Text [19].

2Please report any problemswith this procedure to hacs-bugs@crsx.org.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 3

Now retrieve the hacs-1.1.20.zip archive, extract it to a new directory, and install it, for example with the
following commands:3

$ wget http://crsx.org/hacs-1.1.20.zip
$ unzip hacs-1.1.20.zip
$ cd hacs
energon1[hacs]$ make FROMZIP=1 install install-support

These commands will need Internet access to use the wget command to retrieve support libraries.4 The
above commandwill install HACS in a .hacs subdirectory of your home directory. You can change this with the
option prefix=. . . to (all uses of)make; if so, thenmake sure to replace occurrences of $HOME/.hacs
everywhere belowwith your chosen directory.
Themainmake commandmay take several minutes the first time and should endwithout error.
Please check that your new installation works with these commands:
energon1[hacs]$ cd
$ mkdir myfirst
$ cd myfirst
$ cp $HOME/.hacs/share/doc/hacs/examples/First.hx .
$ $HOME/.hacs/bin/hacs First.hx
$./First.run --scheme=Compile \

--term="{initial := 1; rate := 1.0; position := initial + rate * 60;}"
LDF T, #1
STF initial, T
LDF T_77, #1.0
STF rate, T_77
LDF T_1, initial
LDF T_1_60, rate
LDF T_2, #60
MULF T_2_21 , T_1_60 , T_2
ADDF T_96 , T_1 , T_2_21
STF position, T_96

Congratulations—you just built your first compiler!5 The following assumes that you have issued the
following command tomake themain hacs command available for use:

energon1[hacs]$ alias hacs=$HOME/.hacs/bin/hacs

(It may beworth including this command in your setup, or including the $HOME/.hacs/bin directory in your
$PATH.)
2.3 EXAMPLE (module wrapper). The source file for the First.hx file used in the example above has the
structure

/∗ Our first compiler. ∗/
module org.crsx.hacs.samples .First
{
// Sections.
Lexical Analysis (Section 3)
Syntax Analysis (Section 4)
Semantic Analysis (Sections 5, 7 and 8)
Code Generator (Section 11)

3User input is like this.
4Specifically, HACS needs the CRSX system, JavaCC parser generator, and ICU4C Unicode library. The setup is documented in

src/Env.mk.
5Please do not mind the spacing – that is howHACS prints in its present state.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 4

Main (Section 5)
}

Notice that HACS permits C/Java-style comments and that the final component of themodule name is the
same as the base of the filename.
2.4 NOTATION. The structure shown in Example 2.3 is formally explained in the appendix (Manual A.1), as is
how to runHACS (Manual A.7).
2.5 NOTATION (special Unicode characters). HACS uses a number of special symbols from the standard
Unicode repertoire of characters, shown in Table 1.

Table 1: Unicode special characters used by HACS.

Glyph Code Point Character
¬ U+00AC logical negation sign
¶ U+00B6 paragraph sign
↑ U+2191 upwards arrow
→ U+2192 rightwards arrow
↓ U+2193 downwards arrow
J U+27E6 mathematical left white square bracket
K U+27E7 mathematical right white square bracket
〈 U+27E8 mathematical left angle bracket
〉 U+27E9 mathematical right angle bracket

3. LEXICALANALYSIS
Lexical analysis is the process of splitting the input text into tokens. HACS uses a rather standard variation of
regular expressions for this. This section explains themost common rules; the appendix (Manual A.2) gives the
formal rules.
3.1 EXAMPLE (tokens andwhite space). Here is a HACS fragment for setting up the concrete syntax of
integers, basic floating point numbers, identifiers, andwhite space, for use by this simple language:

1// White space convention.
2space [\t\n] ;
4// Basic terminals.
5token INT | 〈Digit〉+ ;
6token FLOAT | 〈Digit〉* " . " 〈Digit〉+ ;
7token ID | 〈Lower〉+ (' _ ' ? 〈INT〉)* ;
9// Special categories of letters.
10token fragmentDigit | [0−9] ;
11token fragment Lower | [a−z] ;

The example illustrates the following particulars of HACS lexical expressions.
3.2 NOTATION (lexical syntax).
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 5

1. Declarations generally start with a keyword or two and are terminated by a ; (semicolon).
2. token declarations in particular have the token keyword followed by the name of the token and a
regular expression between a | (vertical bar) and a ; (semicolon). Each defines the token as a terminal
symbol that can be used in other token declarations as well as the syntax productions described in the
next section.

3. Token namesmust be words that start with an uppercase letter.
4. A regular expression is a sequence of units, corresponding to the concatenation of a sequence of
characters that match each one. Each unit can be a character class such as [a−z], whichmatches a single
character in the indicated range (or, more generally, in one of a sequence of individual characters and
ranges), a string such as " . " or ' foo' (either kind of quotes is allowed), or a reference to a token or
fragment such as 〈Lower〉, enclosed in the special Unicodemathematical angle brackets (see Table 1).

5. The declaration of a token fragment specifies that the token can only be used in other token
declarations, not in syntax productions.

6. Every regular expression component can be followed by a repetitionmarker ?, +, or *, and regularexpressions can be groupedwith parentheses.
7. The regular expression for white space is setup by space followed by the regular expression of what to
skip – here spaces, tabs, and newlines, where HACS uses backslash to escape in character classes with
usual C-style language escapes.

In addition, this manual follows the convention of naming proper grammar terminals with ALL-CAPS names,
like INT, tomake them easy to distinguish from nonterminals below. (Token declarations are not grammar
productions: tokens cannot be recursively defined, and a token referenced from another token is merely an
inlining of the character sequences allowed bywhat is referenced.)
Notice that while it is possible tomake every keyword of your language into a named token in this way, this

is not necessary, as keywords can be given as literals in syntax productions, covered in the next section.
3.3 EXAMPLE (comments). One common question is what to dowith comments. A common choice is to
ignore them completely. This is achieved by including your comment syntax in your space declaration. For
C/Java “modern” end of line comments, this is for example done as follows:

space [\n\t] | ' // ' .* ;
(as in most regular expression formalisms, . (dot) abbreviates [^\n]).
In addition, HACS has special support for nested comments in the space declaration:
space [\n\t] | nested '(* ' ' *) ' ;

recognizes multi-line comments starting with (* and ending with *), whichmay nest, i.e., the text (*a(*b*)c*) isskipped as one single space.
3.4 COMMANDS (lexical analysis). The fragment above is part of First.run from Section 1, which can thus be
used as a lexical analyzer. This is achieved by passing two arguments to the First.run command: a token sort
and a token term.6 Execution proceeds by parsing the string following the syntax of the token. For example,
the following checks the lexical analysis of a number:

$./First.run --sort=FLOAT --term=34.56
34.56

Note that the term 34.56 could also have been provided enclosed in quotes, such as "34.56" or ’34.56’. If
there is an error, the lexical analyzer will inform us of this:

6The command hasmore options that will be introduced as needed.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 6

$./First.run --sort=INT --term=34.56
Exception in thread "main" java.lang.RuntimeException: net.sf.crsx.CRSException:

Encountered " <T_FLOAT> "34.56 "" at line 1, column 1.
Was expecting:

<T_INT> ...

where the trail of Java exceptions has been truncated. The important information is in the first few lines.
As the example illustrates, all the token declarations together define how the processed stream of

characters is partitioned into terminal symbols with no need for consulting a grammar. The referencemanual
for tokens in the appendix (Manual A.2) gives further details, including some additional constructs.

4. SYNTAXANALYSIS
Once tokens have been defined, it is possible to use HACS to program a syntax analysis with a grammar that
specifies how to decompose the input text according to a concrete syntax and how to construct the desired
abstract syntax tree (AST) from that. Notice that HACS does not provide a “parse tree” in the traditional sense,
i.e., a tree that represents the full concrete syntax parse: only an AST is built. Grammars are structured
following the sorts of AST nodes, with concrete syntax details managed through precedence annotations and
“syntactic sugar” declarations. The complete specification for grammars is in the appendix (Manual A.3).
4.1 EXAMPLE. Here is the syntax analysis grammar from the First.hx example. This small example source
languagemerely has blocks, assignment statements, and a few expression forms, like so:

1main sort Stat | J 〈ID〉 := 〈Exp〉 ; 〈Stat〉 K
2| J { 〈Stat〉 } 〈Stat〉 K
3| JK ;
5sort Exp | J 〈Exp〉 + 〈Exp@1〉 K
6| J 〈Exp@1〉 * 〈Exp@2〉 K@1
7| J 〈INT〉 K@2
8| J 〈FLOAT〉 K@2
9| J 〈ID〉 K@2
10| sugar J (〈Exp#〉) K@2→ Exp# ;

The grammar structures the generated ASTwith two sorts: Stat for statements and Exp for expressions.
The example grammar above captures the HACS version of several standard parsing notions:

Literal syntax is indicated by the double “syntax brackets,” J. . .K. Text inside J. . .K consists of three things
only: spaces, literal character “words,” and references to nonterminals and predefined tokens inside
〈. . .〉. In this way, literal syntax is similar tomacro notation or “quasi-quotation” of other programming
notations.

Syntactic sugar is represented by the sugar part of the Exp sort declaration, which states that the parser
should accept an Exp in parentheses, identified as #, and replace it with just that same Exp, indicated by
→Exp#. This avoids any need to think of parentheses in the generated AST aswell as in the rules below.

Precedence rules are represented by the@-annotations, which assign precedence and associativity to each
operator. This examplemarks all references to the Exp nonterminal inside the productions for Expwith
the lowest permitted precedence in each case. The first rule in line 5 says that the + operator is
restricted on the right to only expressions with at least precedence 1 (but not restricted on the left,
causing it to be left-recursive). The outer @1 in line 6 states that all * expressions have precedence 1,and the inner @-annotations allow left subexpressions of * with at least precedence 1 (* is also leftrecursive), whereas right subexpressionsmust have at least precedence 2. Notice that left (right)
recursion is identified by the leftmost (rightmost) unit in the production having the outer precedence.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 7

The precedence notation allows the definition of one sort per “sort of abstract syntax tree node.” This
enables the use of a single kind of AST node to represent all the “levels” of expression, which helps the
subsequent steps.
4.2 REMARK. Precedence is traditionally donewith additional “helper” productions. It is possible, for
example, to recognize the same Exp language as in Example 4.1 by something akin to the following concrete
HACS specification (in which the sugar is also concrete):
sort Exp0 | J 〈Exp0〉 + 〈Exp1〉 K | J 〈Exp1〉 K ;
sort Exp1 | J 〈Exp1〉 * 〈Exp2〉 K | J 〈Exp2〉 K ;
sort Exp2 | J 〈Int〉 K | J 〈Float〉 K | J 〈ID〉 K | J (〈Exp〉) K ;

However, this grammar generates a different result tree, where the nodes have the three different sorts
used instead of all being of the single Exp sort that the precedence annotationsmake possible. The
transformed system also illustrates howHACS deals with left recursion with@-annotations: each becomes
an instance of immediate left recursion, which is eliminated automatically using standard techniques.
Also note that the notation is admittedly dense. This is intentional, as the notation can be generalized to

serve all the formalisms of the following sections. Here are the formal rules.
4.3 NOTATION (syntax analysis).
1. Each sort is defined by a sort declaration followed by a number of productions, each introduced by a |
(bar). (The first | corresponds to what is usually written ::= or→ in BNF grammars.) All productions for
a sort define cases for that sort as a nonterminal, called the “target” nonterminal.

2. Sort namesmust be words that start with an uppercase letter.
3. Concrete syntax is enclosed in J. . . K (“double” or “white” brackets). Everything inside double brackets
should be seen as literal syntax, even \ (backslash), except for HACSwhite space (corresponding to
[\ \t\n\r]), which is ignored, and references in 〈. . . 〉 (angle brackets), which are special.

4. References to terminals (tokens) and nonterminals (other productions) are wrapped in 〈. . . 〉 (angle
brackets).

5. Precedence is indicated with@n, where higher numbers n designate higher (tighter) precedence. After
every top-level JK and placed last inside every 〈〉-reference to a target nontermina,l there is a
precedence, which defaults to@0. The precedence of self-references at the beginning and end of a
productionmust be greater than or equal to the outer precedence; at most one of the ends can have
precedence equal to the outer one.

6. The special sugar declaration expresses that the specified concrete syntax with a single disambiguated
self-reference is replaced bywhat is written after the→. A reference is “disambiguated” by trailing it
with ameta-variable starting with #.

Of all these rules, the one thing that is unique to parsing is the precedence notation with@. When specifying
a grammar then every target nonterminal reference has a precedence, which determines how to parse
ambiguous terms. So imagine that every 〈〉 contains a@marker at the end, defaulting to@0, and that every
JK is terminated with a@marker, again defaulting to@0.
Notice that HACSwill do three things automatically:
1. Split the productions into subproductions according to the precedence assignments.
2. Eliminate immediate left recursion, as in the example.
3. Left factor the grammar, whichmeans that productions within a sort may start with a common prefix.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 8

However, this is not reflected in the generated trees. They will follow the grammar as specified, eliminating
the need to be aware that this conversion happens.
4.4 COMMANDS. It is possible to parse an expression from the command line:

$./First.run --sort=Exp --term="(2+(3*(4+5)))"
2 + 3 * (4 + 5)

Notice that the printout differs slightly from the input term as it has been “resugared” from the ASTwith
minimal reinsertion of the sugared syntax.

$./First.run --sort=Exp --term="2 ** 3"
Exception in thread "main" java.lang.RuntimeException: net.sf.crsx.CRSException:
Encountered " "*" "* "" at line 1, column 4.

Was expecting one of:
"(" ...
<T_INT> ...
<T_FLOAT> ...
<T_ID> ...

Similarly to the lexical analysis, the syntax analysis can return an error in the case that a term provided does
not satisfy the grammar.

5. ABSTRACT SYNTAXANDRECURSIVE TRANSLATION SCHEMES
This section explains how to express recursive translation schemes over the abstract syntax implied by a
grammar. The formal specification for this section is in the appendix (Manual A.4 and A.5).
5.1 EXAMPLE. Consider the following subset of the example expression grammar of Example 4.1:
sort Exp | J 〈Exp〉 + 〈Exp@1〉 K

| J 〈Exp@1〉 * 〈Exp@2〉 K@1| J 〈INT〉 K@2
| J 〈FLOAT〉 K@2
| sugar J (〈Exp#〉) K@2→ Exp# ;

This grammar serves two purposes: to describe all token sequences that can be parsed and to describe the
structures that are generated from them. Erasing all the information that is purely there for parsing leaves
just
sort Exp | J 〈Exp〉 + 〈Exp 〉 K

| J 〈Exp 〉 * 〈Exp 〉 K
| J 〈INT〉 K
| J 〈FLOAT〉 K ;

This is dubbed the abstract syntax for the Exp sort, because all the helper information for the parser has been
removed, leaving only the essential, structural information.
The abstract syntax, illustrated by the example, is relevant because the output of a HACS-generated parser

is an abstract syntax tree, or AST, thus all subsequent processing with HACS is based on this simplified
structure.
Formally, the abstract syntax is obtained as follows:
• Erase all @n precedencemarkers.
• Remove sugar productions.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 9

What remains areminimal productions with the essential information describing the AST.
5.2 REMARK. The dragon book [2] achieves a similar but even bigger leap by associating the grammar with
explicit precedence, written

E → E + T | T
T → T ∗ F | F
F → (E) | int | float

with the abstract syntax
E → E + E | E ∗ E | int | float

which additionally “folds” the T and F productions intoE, as was effectively done in the previous section.
With such a description of the AST, it is possible to write code that operates on the AST, implementing the

notion of syntax-directed translation (although it would perhaps be even better called “abstract
syntax-directed translation”).
5.3 DEFINITION. A scheme is syntax-directed if it has one case per abstract syntax production.
In practice, syntax-directed translation schemes defined in HACS have one rule per abstract syntax

production.
5.4 EXAMPLE (scheme over syntax). Consider the abstract expression grammar from Example 5.1, and
define a new scheme called Leftmost, which for an expression returns the leftmost number of the expression.
To achieve this, first declare the scheme as follows:
sort Exp | scheme Leftmost(Exp) ;

The declaration states that the scheme takes one parameter of sort Exp in ()s and delivers a result that is also
of sort Exp. (Translations that convert from one sort to another will come into play as needed going forward.)
To have Leftmost actually do something requires a set of rules of the form
Leftmost(. . .)→ . . . ;

where the two . . . in each case are replacedwith a pattern and a result, in this case both of sort Exp. The
patterns are obtained directly from the abstract syntax productions simply bymarking every 〈〉-embedded
token or nonterminal with a “disambiguation” mark, #n, giving the following:
Leftmost(J〈Exp#1〉 + 〈Exp#2〉K) → . . . ;
Leftmost(J〈Exp#1〉 * 〈Exp#2〉K) → . . . ;
Leftmost(J〈INT#〉K) → . . . ;
Leftmost(J〈FLOAT#〉K) → . . . ;

It is now possible to express the right side of each translation rule using the now named fragments of the
pattern, keeping in mind that the result should always be of Exp sort:
Leftmost(J〈Exp#1〉 + 〈Exp#2〉K) → Leftmost(Exp#1) ;
Leftmost(J〈Exp#1〉 * 〈Exp#2〉K) → Leftmost(Exp#1) ;
Leftmost(J〈INT#〉K) → J〈INT#〉K ;
Leftmost(J〈FLOAT#〉K) → J〈FLOAT#〉K ;

The first two rules pass the #1 fragment, which is of Exp sort, into Leftmost, which is guaranteed (by the
declaration) to return something of Exp sort. The last two rules explicitly return the argument form of sort
Exp. Notice that in the last two rules, the pattern sets up # to be of sort INT and FLOAT, respectively,
disallowing their use directly as the result, as they have thewrong sort. Instead it uses syntax construction to
obtain the correct sort bymaking use of an appropriate production.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 10

A syntax-directed scheme like Leftmost is called a semantic translation scheme because it is declared
without any new syntax, i.e., without any use of JK.
5.5 COMMANDS (invoke scheme). The Leftmost scheme above is also included in First.hx. Since it operates
on a single syntactic expression, it is possible to invoke the Leftmost scheme from the command line as
follows:

$./First.run --scheme=Leftmost --sort=Exp --term="2*3+4"
2

It is necessary to specify the sort of the input expression here because Leftmost takes an Exp argument,
which is different from themain Stat sort.
The notation for defining a syntax-directed scheme is as follows.

5.6 NOTATION (syntax-directed schemes).
1. Set the result sort and add a declaration for the scheme. A scheme S of result sort Rwith argument
sorts A and B is declared by
sort R | scheme S(A, B);

A scheme is namedwith a capitalized word (the same as sort names), optionally followed by some
“arguments” in ()s, where the declaration gives the sort for each argument.

2. Tomake the scheme S syntax-directed in, say, A, create a separate rule for each “pattern case” of A,
which is just each abstract syntax production for Awith a #nmarker after the token or nonterminal
name to identify the subexpression of that token or nonterminal for use on the right side of the→.
Thus,
sort A | J a 〈E〉 b K | J 〈G〉 c 〈H〉 K ;

should have
sort R;
S(J a 〈E#1〉 b K , #2) → . . . ;
S(J 〈G#1〉 c 〈H#2〉 K , #3) → . . . ;

The #-markers are calledmeta-variables and are tied to one specific sort in a rule, whether by its marker
inside syntax or position as an argument. In the example this means that in the first rule, #1 is of sort E
and #2 of sort B, whereas in the second rule, #1 is of sort G, #2 of sort H, and here #3 is of sort B. (Rules
are very like sugar productions except a given construct can havemore than one rule; sugar, however,
is limited to a single rule that cannot depend on the inner structure of the construct.)

3. Each rule should be equippedwith a result (right of the→) of the result sort, which can use the
“meta-variable” #-named fragments using any (syntactic or semantic) mechanism for building
something of the result sort. For example, adding
sort R | J x 〈E〉 K | schemeOther(B);

allows writing
sort R;
S(J a 〈E#1〉 b K , #2) → J x 〈E#1〉 K ;
S(J 〈G#1〉 c 〈H#2〉 K , #3) → Other(#3) ;

5.7 EXAMPLE (default rules). Since the last two cases of the Leftmost system in Example 5.4 above really
just return the entire term again, the system can instead bewritten as follows:
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 11

sort Exp | scheme Leftmost(Exp) ;
Leftmost(J〈Exp#1〉 + 〈Exp#2〉K) → Leftmost(#1) ;
Leftmost(J〈Exp#1〉 * 〈Exp#2〉K) → Leftmost(#1) ;
default Leftmost(#) → # ;

which explicitly calls out that if neither of the two regular cases apply, then the scheme just returns the
contained expression.
Thus far, the syntactic brackets J. . . K have been consistently used for “stuff in the input,” essentially input

data, and semantic constructors (like Leftmost above) for “things that can be computed,” or functions. HACS
does not, in fact, insist on this separation. In particular, it is permissible to define “syntactic schemes,” which
introduce new syntax that has simplification rules associated with it.
Specifically, syntactic schemes are schemes that are defined using J. . . K notation. They are very similar to

sugar declarations, except that they can havemultiple rules with patternmatching to select which to apply,
in contrast to sugar declarations, which can only have one generic case with a single unconstrained
meta-variable.
5.8 EXAMPLE (syntactic scheme). Consider the syntactic list (data) sort
sort List | J 〈Elem〉 〈List〉 K | JK ;

There is sometimes a need to flatten nested lists whenworkingwith complex expressions. This can, of course,
be donewith a usual syntax-directed semantic scheme and a lot of nested J〈〉K constructions. An alternative
is to define a syntactic scheme, which is a scheme expressed in syntactic form but in fact defined by rewrite
rules. Flattening of lists can, for example, be defined as follows:
sort List | scheme J{ 〈List〉 } 〈List〉 K ;
J { 〈Elem#1〉 〈List#2〉 } 〈List#3〉 K → J 〈Elem#1〉 { 〈List#2〉 } 〈List#3〉 K ;
J { } 〈List#〉 K → # ;

This creates a scheme that can be informally written as J{_}_Kwith the understanding that the two
occurrences of “_” should be filled with lists as prescribed by the syntax specification in the scheme
declaration. Notice that the two rules differ on the content of the braces and are clearly designed to fully
eliminate all possible contents of the braces. This is essential; the scheme should be complete. To be precise:
the first _ position in the J{_}_K function definition is filled differently in the two rules, namely once with each
of the data shapes of lists – indeed the rules are syntax-directed in the first list argument.
Syntactic schemes are very useful for working with output structures; for example, the flattening scheme

of Example 5.8makes it much easier tomanipulate sequences of assembler instructions.
5.9 EXAMPLE (stack code compiler). Figure 1 shows the HACS script Stack.hx, which contains a compiler
from simple expressions to stack code. Lines 3–13 contain a simple expression grammar, as already
discussed. Lines 15–24 contain a separate grammar, this time for the output stack Code (the special ¶marks
indicate where to insert newlines when printing code, and are not part of the syntax). Lines 26–30 contain a
flattening syntax scheme (as in Example 5.8) for sequences of instructions. Finally, lines 32–38 contain the
syntax-directed translation from expressions to stack code. It is used it in the usual way,

$ hacs Stack.hx
HACS 1.1.20
. . .

$./Stack.run --scheme=Compile --term="(1+2)*(3+4)"
PUSH 1
PUSH 2
ADD
PUSH 3
PUSH 4
ADD
MULT

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 12

Figure 1: examples/Stack.hx.

1module org.crsx.hacs.samples .Stack {
3// Grammar.
4space [\t\n] ;
5token INT | [0−9]+ ;
6token ID | [a−z] [a−z0−9_]* ;
8main sort Exp
9| J 〈Exp@1〉 + 〈Exp@2〉 K@1
10| J 〈Exp@2〉 * 〈Exp@3〉 K@2
11| J 〈INT〉 K@3
12| sugar J (〈Exp#〉) K@3→ Exp#
13; //

15// Stack code.
16sort Code
17| J 〈Instruction〉 〈Code〉 K
18| J K
19;
20sort Instruction
21| J PUSH 〈INT〉 ¶ K
22| J ADD ¶ K
23| J MULT ¶ K
24; //
26// Flattening helper.
27sort Code | scheme J{ 〈Code〉 } 〈Code〉 K ;
28J { 〈Instruction#1〉 〈Code#2〉 } 〈Code#3〉 K
29→ J 〈Instruction#1〉 { 〈Code#2〉 } 〈Code#3〉 K ;
30J { } 〈Code#〉 K → Code# ; //
32// Compiler.
33sort Code | schemeCompile(Exp) ;
34Compile(J〈Exp#1〉 + 〈Exp#2〉K)
35→ J { 〈Code Compile(#1)〉 } { 〈Code Compile(#2)〉 } ADD K ;
36Compile(J〈Exp#1〉 * 〈Exp#2〉K)
37→ J { 〈Code Compile(#1)〉 } { 〈Code Compile(#2)〉 } MULT K ;
38Compile(J〈INT#〉K) → JPUSH 〈INT#〉K ; //
40}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 13

Simple code generation tasks can be handled with recursive schemes, such as this one. However, serious
compilation tasks will require proper attributes and semantic helper structures, detailed in the following
sections.

6. SEMANTICDATA, OPERATORS, AND EVALUATION
Formost compilers, simple recursive translations, such as presented above, do not suffice. More complex
programming tools are necessary to support more sophisticated analyses and transformations.
Specifically, note that rules for syntax-directed schemes are similar to definitions by case in functional

programming. However, there are important differences to be detailed here that sometimesmakeHACS pick
rules differently than functional programming would.
As discussed in the previous section, it is possible to have functions written with syntactic brackets, and

similarly it is possible to have data written with semantic constructors, called “semantic data.” Semantic data
forms are introduced as non-syntax (so-called “raw”) notations that can be used in patterns.
6.1 EXAMPLE (semantic data constants). Another fragment of the First.hx example has the semantic sorts
and operations that are used. For the toy language that just means the notion of a typewith the way that
types are “unified” to construct new types.

1// Types to associate to AST nodes.
2sort Type | Int | Float ;
4// The Type sort includes a scheme for unifying two types.
5| schemeUnif(Type,Type) ;
6Unif(Int , Int) → Int;
7Unif(#1, Float) → Float;
8Unif(Float , #2)→ Float;

The code declares a new sort, Type, which is a semantic sort because it does not include any syntactic cases:
all the possible values (as usual listed after leading |s) are simple term structureswritten without any JKs. Term
structures are written with a leading “constructor,” which should be a capitalized word (the same as sort and
scheme names), optionally followed by some arguments in ()s, where the declaration gives the sort for each
argument (here there are none).
The rules for the Unif scheme, above, can be used, for example, to simplify a composite term as follows:
Unif(Unif(Int , Float), Int) → Unif(Float , Int) → Float

Note that overlaps are permissible, but it is important to verify determinacy, i.e., if a particular combination
of arguments can be subjected to two rules, then they should give the same result! This example satisfies this
requirement because the termUnif(Float,Float) can be rewritten by both the rule in line 7 and the rule in
line 8, but it does not matter, because the result is the same. Also note that the order of the rules does not
matter: the three rules in lines 6–8 above can be given in any order.
6.2 EXAMPLE. Consider the complete HACS script in Figure 2. Lines 3–12 define a syntax of expressions
with lists, sums, external references, and the Peano convention that 0 stands for itself and s n stands for
n + 1. Line 15 defines a new semantic data sort, Value, which represents the same information but outside of
syntax brackets. Line 18 defines a scheme as before, except now it is defined in lines 19–23 also over the
data formswith arguments. Lines 25–31 provide a traditional syntax directed translation from the syntactic
Exp format to the semantic Value form. However, an attempt to run the Load scheme of the script on a single
example like this:

$ hacs SZ.hx
. . .

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 14

Figure 2: Peano numbers with addition and lists (examples/SZ.hx).
1module org.crsx.hacs.samples .SZ { //−∗−hacs−∗−

3// Input syntax.
4token ID | [a−z]+ [0−9]* ;
5main sort Exp
6| J 〈Exp@1〉 : 〈Exp@2〉 K@1
7| J 〈Exp@2〉 + 〈Exp@3〉 K@2
8| J 〈ID〉 K@3
9| J 0 K@3
10| J s 〈Exp@3〉 K@3
11| sugar J (〈Exp#〉) K@3 → #
12;
14// Semantic Values.
15sort Value | Pair(Value , Value) | Plus(Value , Value) | Ref(ID) | Zero | Succ(Value) ;
17// Semantic Operations.
18| schemeAdd(Value, Value) ;
19Add(Ref(#id), #2)→ Plus(Ref(#id), #2) ;
20Add(Zero , #2)→ #2 ;
21Add(Succ(#1), #2)→ Succ(Add(#1, #2)) ;
22Add(Pair(#11, #12), Pair(#21, #22))→ Pair(Add(#11, #21), Add(#12, #22)) ;
23Add(Plus(#11, #12), #2)→ Plus(#11, Add(#12, #2)) ;
25// Loading input into internal form.
26| scheme Load(Exp) ;
27Load(J 〈Exp#1〉 : 〈Exp#2〉 K) → Pair(Load(#1), Load(#2)) ;
28Load(J 〈Exp#1〉 + 〈Exp#2〉 K) → Add(Load(#1), Load(#2)) ;
29Load(J s 〈Exp#〉 K) → Succ(Load(#)) ;
30Load(J 0 K) → Zero ;
31Load(J 〈ID#id〉 K) → Ref(#id) ;
33// External translation.
34sort Exp | schemeCalc(Exp) ;
35Calc(#) → Unload(Load(#)) ;
36| schemeUnload(Value) ;
37Unload(Zero) → J 0 K ;
38Unload(Succ (#)) → J s 〈Exp Unload(#)〉 K ;
39Unload(Plus(#1, #2)) → J 〈Exp Unload(#1)〉 + 〈Exp Unload(#2)〉 K ;
40Unload(Pair(#1, #2)) → J 〈Exp Unload(#1)〉 : 〈Exp Unload(#2)〉 K ;
41Unload(Ref (#)) → J 〈ID#〉 K ;
42Unload(Succ (#)) → J s 〈Exp Unload(#)〉 K ;
43}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 15

$./SZ.run --scheme=Load --term="s 0+s 0"
« $Print2-SZ$Value[SZ$Value_Succ[SZ$Value_Succ[SZ$Value_Zero]], 0] »

delivers the right result, which is the Peano numeral for 2, however, it is not printed properly: the Succ
constructors show up in internal form. This is because semantic data structures have no syntax and therefore
cannot be printed. The proper way is to use the Calc script, which translates back to external form, like this:

$ hacs SZ.hx
. . .

$./SZ.run --scheme=Calc --term="s 0+s 0"
s s 0

which generates the correct result. This uses the Calc scheme defined in lines 34–35 and the Unload scheme
from line 37 of Figure 2.
However, while HACS definitions for schemes and data sorts look like function definitions and algebraic

data types, they are evaluated differently than those would be in functional programming. Specifically, HACS
allows rules tomatch and be applied before thematched arguments have been evaluated, which can give
results that are surprising to the uninitiated. Specifically, HACS is neither “eager” nor “lazy,” although it is
closer to the latter.
Consider this context:
sort Bool | True | False | schemeOr(Bool, Bool);

Defining theOr scheme as follows
Or(False , False) → False ; //1
defaultOr(#1, #2)→ True ; //2 problematic

is only correct under one condition: that the arguments to Or are never computed by schemes. Consider, for
example, the term
Or(Or(False , False), False)

For this term, HACS is allowed to decide that //1 cannot be immediately applied, because at this time the first
parameter is different from False, and HACSmay then decide to instead use //2. This is probably not what is
intended.
The best way to avoid this is to fully expand the observed parameters for Or, which leads to the classic

definition,
Or(False , #2)→ #2 ;
Or(True , #2)→ True ;

With rules that check for equality between several parameters, this requires further care. Consider, for
example, the following additions that search a list for a specific boolean value:
sort Bools | Cons(Bool , Bools) | Nil ;
sort Bool | scheme Find(Bools, Bool) ;
Find(Cons(#b , #bs), #b) → True ; //3
Find(Cons(#b , #bs), #b2) → Find(#bs , #b2) ; //4 problematic
default Find(#bs , #b) → False ; //5 problematic

These rules are problematic for two reasons. First, HACS can always pick rule //4 over rule //3, and in this
way give a false negative, as will be discussed below. Second, if the list is computed, then the default rule can
be accidentally used. Consider an expression like
Find(Append (...), True)

(with some suitable definition of Append). Because this does not immediately match //3+4, HACS can decide
at that time to apply rule //5, which of course is wrong.
A fix for the second issue is to instead use

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 16

Find(Nil , #b) → False ; //6
Find(Cons(#b , #bs), #b) → True ; //7 careful
default Find(Cons(#b , #bs), #b2) → Find(#bs , #b2) ; //8

This avoids issues where the list parameter is unevaluated: they will not match any rule, so nowrong
simplification is done.
However, it still requires care to ensure that both of the compared pieces in //7 are always in data form. To

see why, consider an expression like
Find(Cons(Or (...), ...), True)

Again, this does not immediately fit //7without evaluating theOr(...) subterm, so HACSmay instead use //8,
leading to a false negative result.
The fix to this is to guarantee that elements of a list are always data, and not unevaluated. Oneway to

achieve this is to use a special constructor when building such lists. If the expression is
Find(EvalCons(Or (...), ...), True)

with
sort Bools | scheme EvalCons(Bool, Bools) ;
EvalCons(T , #bs) → Cons(T , #bs) ;
EvalCons(F , #bs) → Cons(F , #bs) ;

then the problem does not occur, because theOr is forced to be evaluated before the value is stored in the
list. With the use of EvalCons instead of Cons everywhere, //6−8 are safe to use. Note that //3−5 are still
not safe because theymay observe an unevaluated EvalCons, which would still allow picking the wrong rule.
The EvalCons approach has the advantage of stating explictly what is forced.
Finally, the above is so common that it is supported with a special declaration that can be added to achieve

the same effect: if the rules are written as
Find(Nil , #b) → False ;
[data #b] Find(Cons(#b , #bs), #b) → True ;
default Find(Cons(#b , #bs), #b2) → Find(#bs , #b2) ;

with the option prefix [data #b], then the rule will force complete evaluation of the #b component before it is
determined that the second rule does not apply and thus that the default rule may be used. Indeed it is seen
as good practice to use the data option for all instances where two subterms are compared for equality.

7. SYNTHESIZING INFORMATION
HACS has special support for assembling information in a “bottom-up” manner, corresponding to the use of
synthesized attributes in compiler specifications written as syntax-directed definitions (SDD), also known as
attribute grammars. This section explains how to convert any SDD synthetic attribute definition into one
appropriate for HACS, introducing the necessary HACS formalisms along the way. You can find further details
in the appendixManual A.6.
7.1 EXAMPLE. Consider the following single definition of the synthesized attribute t for expressionsE:

PRODUCTION SEMANTIC RULES
E → E1 + E2 E.t = Unif(E1.t, E2.t)

(E1)

The rule is what the Dragon book calls “S-attributed” because it exclusively relies on synthesized attributes.
This allows expression of the rule directly in HACS as follows.
1. The first thing to do is declare the attribute and associate it with theE sort.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 17

attribute ↑t(Type);
sort E | ↑t ;

the ↑ indicates “synthesized” because the attributemoves “up” in the tree. The declaration of the
attribute indicates with (Type) that the value of the synthesized attribute is of sort Type. Attributes are
always namedwith lowercase names.

2. Second, create patterns from the abstract syntax production, as in the previous section: the pattern for
the single production is

J 〈E#1〉 + 〈E#2〉 K
using the subscripts from (E1) as #-disambiguationmarks.

3. Next add in synthesis patterns for the attributes to be read. Each attribute reference likeE1.t becomes
a pattern like 〈E#1 ↑t(#t1)〉, where themeta-variables like #t1 should each be unique. For this example,

J 〈E#1 ↑t(#t1)〉 + 〈E#2 ↑t(#t2)〉 K

which sets up #t1 and #t2 as synonyms forE1.t andE2.t , respectively.
4. Finally, add in the actual synthesized attribute, using the same kind of pattern at the end of the rule
(and add a ;), to give

J 〈E#1 ↑t(#t1)〉 + 〈E#2 ↑t(#t2)〉 K ↑t(Unif(#t1,#t2)) ;
This is read, “When considering an E (the current sort), which has the (abstract syntax) shape
J〈E〉+ 〈E〉Kwhere furthermore the first expression has a valuematching #t1 for the synthesized
attribute t, and the second expression has a valuematching #t2 for the synthesized attribute t, then the
entire expression should be assigned the value Unif(#t1,#t2) for the synthesized attribute t.”

Assuming that Unif refers to the semantic scheme defined in Example 6.1, the process is complete.
7.2 NOTATION (value synthesis rules).
1. Synthesized simple attributes are declared with declarations like attribute ↑ a(S);with a a lowercase
attribute name and S the sort name.

2. The synthesized attribute a is associated with a sort by adding the pseudo-production | ↑ a to the sort
declaration.

3. Synthesis rules as discussed here have the form p ↑ a(r), where p is like a pattern in a rule, but with the
requirement that p be a data instance (not a scheme); a is an attribute name; and r should be a
replacement of the value sort of a.

7.3 EXAMPLE. Example 4.1 presented the abstract syntax of the small language processed by First.hx. A
type analysis of the expressions of the language (for now excluding variables) might look as follows as a
standard SDD (syntax-directed definition), whereE is the Exp nonterminal and is associated with one
attribute: E.t is the synthesized Type of the expressionE. In the notations of [2], the SDD can be specified
something like this:

PRODUCTION SEMANTIC RULES
E → E1 + E2 E.t = Unif(E1.t, E2.t)

| E1 ∗ E2 E.t = Unif(E1.t, E2.t)

| int E.t = Int

| float E.t = Float

where it is again assumed thatUnif is defined as discussed in Example 6.1. Convert this SDD to the following
HACS (using the proper names for the sorts as actually found in First.hx):
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 18

Figure 3: Synthesizing the value of a Boolean expression (examples/Bool.hx).

1// Boolean algebra.
2module org.crsx.hacs.samples .Bool {
4// Syntax.
5sort B
6| J t K@4| J f K@4 // true and false constants
7| J ¬ 〈B@3〉 K@3 // negation
8| J 〈B@3〉& 〈B@2〉 K@2 // conjunction
9| J 〈B@2〉 | 〈B@1〉 K@1 // disjunction
10| sugar J (〈B#〉) K@4→ B# // parenthesis
11;
13// Main: evaluate Boolean expression.
14main sortB | scheme Eval(B) ;
15Eval(# ↑b(#b)) → #b ;
17// Actual evaluation is a synthesized attribute.
18attribute ↑b(B);
19sort B | ↑b ;
21// Constants.
22JtK ↑b(JtK) ;
23JfK ↑b(JfK) ;
25// Disjunction.
26J 〈B#1 ↑b(#b1)〉 | 〈B#2 ↑b(#b2)〉 K ↑b(Or(#b1 , #b2)) ;
27| schemeOr(B, B) ; Or(JtK , #2)→ JtK ; Or(JfK , #2)→ #2 ;
29// Conjunction.
30J 〈B#1 ↑b(#b1)〉 & 〈B#2 ↑b(#b2)〉 K ↑b(And(#b1 , #b2)) ;
31| schemeAnd(B, B) ; And(JtK , #2)→ #2 ; And(JfK , #2)→ JfK ;
33// Negation.
34J ¬ 〈B# ↑b(#b)〉 K ↑b(Not(#b)) ;
35| schemeNot(B) ; Not(JtK) → JfK ; Not(JfK) → JtK ;
37}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 19

1attribute ↑t(Type); // synthesized type

3sort Exp | ↑t ; // expressions have an associated synthesized type, E.t

5// Synthesis rules for E.t.
6J 〈Exp#1 ↑t(#t1)〉 + 〈Exp#2 ↑t(#t2)〉 K ↑t(Unif(#t1,#t2));
7J 〈Exp#1 ↑t(#t1)〉 * 〈Exp#2 ↑t(#t2)〉 K ↑t(Unif(#t1,#t2));
8J 〈INT#〉 K ↑t(Int);
9J 〈FLOAT#〉 K ↑t(Float);

Line 1 declares the value of the synthesized t attribute to be a Type. Line 3 associates the synthetic attribute
t to the Exp sort: all synthetic attributes are associated with one ormore abstract syntax sorts. The
remaining lines 5–9 are synthesis rules that show for each form of Expwhat the value should be, based on the
values passed “up” from the subexpressions; these are generated from the abstract syntax patterns and
synthesis semantic rules, as discussed above.
7.4 EXAMPLE. Figure 3 shows an implementation of Boolean algebra implementedwith synthesized
attributes. Notice how themain Eval scheme is defined to “request” the value of the synthesized attribute,
which then triggers the evaluation of the Boolean expression. An example runwould be

$ hacs Bool.hx
. . .

$./Bool.run --scheme=Eval --term=’t|(¬f)’
t

Finally, note that in the case of multiple synthetic attributes, a synthesis rule only adds one new attribute
to the program construct in question; it does not remove any other attributes already set for it (see below for
examples of such systems).

8. FULL SYNTAX-DIRECTEDDEFINITIONSWITH ENVIRONMENTS
Descriptions to this point have used “top-down” recursive schemes with positional parameters and
“bottom-up” synthesis of named attributes with simple values. The last component used in traditional
compiler specification is the use of inherited named attributes, which are distributed top-down, like
parameters. HACS supports this with a hybrid combination of implicit named parameters for recursive
schemes. The section introduces features of HACS covered in the appendixManual A.6.
One of themain uses of inherited attributes in formal compiler specifications is symbol management. The

focus here is on the HACS notion of environment, which fills this niche and cannot be easily achievedwith
usual positional arguments to recursive schemes.
8.1 EXAMPLE. Compiler construction formalization expresses the use of a symbol table using an SDDwith
an inherited attribute that for each node in the AST associates the appropriate symbol table for that node.
Consider the following three simple semantic rules, which demonstrate this approach:

PRODUCTION SEMANTIC RULES
S → T1 id2 = E3;S4 E3.e = S.e;S4.e = Extend(S.e, id2.sym, T1) (1)
E → E1 + E2 E1.e = E.e;E2.e = E.e (2)
| id1 E.t = Lookup(E.e, id1.sym) (3)
| num1 (4)

Rule (1) handles declarations in the toy language: it creates a new environment (or symbol table) that extends
the environment from the context, the inherited environment S.e , with a new coupling from the symbol of id2
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 20

to the type T1: the notationmeans that the new environment S4.e contains the newmapping as well as all
the bindings from S.e (except any previousmapping of the symbol id2). Rule (2) merely expresses that the e
attribute is inherited from the context to both subexpressions of addition expresions. Rule (3) uses the
environment to attach a synthesized attribute t onto anE that contains an id token (but is not otherwise
used in these rules). Specifically, the notation is meant to suggest that the type value is obtained by a lookup
of themapping for the symbol of id1. Finally, rule (4) is included to exemplify what to dowith rules that do not
propagate the environment.
Here are the steps to translate the above SDD fragment to HACS.
1. First, encode the grammar (assuming an existing T sort of types and ID tokens as in the previous
section):
sort S | J 〈T〉 〈ID〉 = 〈E〉 ; 〈S〉 K ;
sort E | J 〈E〉 + 〈E@1〉 K | J 〈ID〉 K@1;

(Assume that the T sort is defined elsewhere.)
2. Having defined the grammar, declare the new attribute:

attribute ↓e{ID : T} ;
Like synthesized attributes, inherited attributes are always given lowercase names. The {ID:T} part
declares the value of the attribute to be amapping from values (token strings) of ID sort to values of T
sort. Suchmappings take the role of symbol tables from traditional compilers.

3. Second, associate the inherited attribute to one ormore recursive schemes, whichwill be responsible for
propagating that inherited attribute over values of a certain sort. This has to be done by inventing a
separate scheme for each combination of a sort and an inherited attribute:
sort S | scheme Se(S) ↓e ;
sort E | scheme Ee(E) ↓e ;

As can be seen, the scheme generates results of the S and E sorts, in each case taking a single argument
of the same sort, and for each indicating with a ↓ that the scheme carries the associated inherited
attribute. Notice that, unlike for synthesized declarations, there is no | in front of the attribute,
because the attribute itself is specific to the scheme, not a declaration for the entire sort.

4. Next, encode the simplest rule, (2). As in the previous section, observe that (2) operates on sums, which
leads to a pattern like the following, using the subscripts from (2):

J 〈E#1〉 + 〈E#2〉 K
Now insert the pattern into the scheme, as was done for recursive syntax-directed schemes:
Ee(J〈E#1〉 + 〈E#2〉K)

This clearly respects the sort constraints defined above, with Ee being applied to an E expression. Since
there are no complicated dependencies in (2), the process is almost complete. All that is left to do is
create a rule that, on the right side of the→ applies the Ee scheme recursively to the subexpressions
that should inherit the e attribute, which are the twomarked subexpression, inside the syntax markers:
Ee(J〈E#1〉 + 〈E#2〉K) → J〈E Ee(#1)〉 + 〈E Ee(#2)〉K ;

Notice that there is no explicit mention of the e attribute, only the implicit copying that follows from the
use of the Ee scheme. The recursive arrangement of the Eewrappers implies the two attribute
equationsE1.e = E.e andE2.e = E.e from (2).
Also notice that for inherited attributes all the equations are handled by one rule, unlike for
synthesized, where there is a synthesis rule for every equation.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 21

5. Next, consider rule (3), which defines the synthesized attribute t on id-expressions using a “Lookup”
meta-function that is meant to suggest extracting themapping from theE.e environment inherited
from the context. Begin with a template like this:
Ee(J〈ID#1〉K) → J〈ID#1〉K ;

which just states that the e attribute is inherited “into” a name subterm (through Ee), essentially
makingE.e available, but note that the rule does not use the inherited attribute. In particular, this rule
fails to actually set the t attribute. Fixing this entails first capturing the “Lookup” in the inherited
environment. HACS has a special notation for this. Write the pattern as follows:
Ee(J〈ID#1〉K) ↓e{#1 : #t} → . . .

The pattern of this rule is equippedwith amapping constraint on the e inherited attribute, which
corresponds to the Lookup notation of (3) above. It will match when Ee is applied to a name, called #1,
which is alsomapped by the associated e attribute to a type, denoted #t. After capturing themapped
type this way, complete the rule by explicitly associating it to the t attribute associated with ID
expressions.
Ee(J〈ID#1〉K) ↓e{#1 : #t} → J〈ID#1〉K ↑t(#t) ;

Notice howmappings like e use {} notation for both declarations and constraints, and simply valued
attributes like t use ().

6. The semantic rules of the SDD can now be completed by encoding (1). Begin with
Se(J〈T#1〉 〈ID#2〉 = 〈E#3〉; 〈S#4〉K) → J〈T#1〉 〈ID#2〉 = 〈E Ee(#3)〉 ; 〈S Se(#4)〉K ;

whichmerely establishes that the basic rules that the S.e attribute inherited from the context (through
the left hand Se) are passed to bothE3 and S4 through the right Ee and Se, respectively. This captures
everything except the “Extend” notation. HACS supports this by allowingmapping constraints also on
the right side of the→ acting as extensions of themap.
Se(J〈T#1〉 〈ID#2〉 = 〈E#3〉; 〈S#4〉K)
→ J〈T#1〉 〈ID#2〉 = 〈E Ee(#3)〉 ; 〈S Se(#4) ↓e{#2 : #1}〉K ;

Consider carefully how the J. . . K and 〈. . . 〉 nest: the first set wraps syntax fragments, and the second
wraps raw (non-syntax) fragments inside syntax. Attribute constraints are always in the raw fragments.

7. Finally, (4) does not contain any semantic rules but a casemust still be provided for the scheme:
Ee(J〈NUM#1〉K) → J〈NUM#1〉K ;

Furthermore, if the SDD in question hasmore semantic rules with synthetic attributes, then all of the above
rules should be equippedwith a special ↑#synmarker to preserve all synthesized attributes through the
inheritance scheme, whichmakes the whole system look as follows.
Se(J〈T#1〉 〈ID#2〉 = 〈E#3〉; 〈S#4〉K ↑#syn)
→ J〈T#1〉 〈ID#2〉 = 〈E Ee(#3)〉 ; 〈S Se(#4) ↓e{#2 : #1}〉K ↑#syn ;

Ee(J〈E#1〉 + 〈E#2〉K ↑#syn) → J〈E Ee(#1)〉 + 〈E Ee(#2)〉K ↑#syn ;
Ee(J〈ID#1〉K ↑#syn) ↓e{#1 : #t} → J〈ID#1〉K ↑#syn ↑t(#t) ;
Ee(J〈NUM#1〉K ↑#syn) → J〈NUM#1〉K ↑#syn ;
One important constraint for inherited attributes is that there is precisely one rule for the carrier scheme

of the attribute per syntax case. This has an interesting consequence: if a rule mixes several inherited
attributes, those inherited attributes must share the same carrier.
The addition of inherited attributes completes the list of possible attributes forms.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 22

Table 2: Attribute constraints.

NOTATION IN PATTERN IN RESULT
D↑a(#) Dmust synthesize a-value in # Dwill synthesize a-value in #
D↑a{:#} — a-environment in :# — a-environment in :#

D↑a{#k : #v} ——which includes binding #k to #v ——which includes binding #k to #v
D↑a{¬#k} ——which does not have binding for #k n/a
D↑a{} n/a D synthesizes empty environment in a
D↑# AllD-synthesized attributes in # All attributes in #D-synthesized
F↓a(#) F must inherit a-value in # F will inherit a-value in #
F↓a{:#} — a-environment in :# — a-environment in :#

F↓a{#k : #v} ——which includes binding #k to #v ——which includes binding #k to #v
F↓a{¬#k} ——which does not have binding for #k n/a
F↓a{} n/a F inherits empty environment in a

8.2 NOTATION (attributes).
1. Attributes are definedwith attribute declarations:

attribute
{
↑
↓

}
a


(S)

{S′ }
{S′ : S }

 ;

where each braced unit represents a choice:
• The arrow determines whether to define a synthetic (↑) or inherited (↓) attribute.
• a is the attribute name, a lowercase identifier.
• The last unit gives the category and sort(s) of the attribute: (S) is a simply valued attribute of sort
S, {S′} is an attribute with a set of S′-members, and {S′ : S} is an attribute with amap from
S′-values to S-values. For sets andmaps, the S′ sort must be a token sort (or a sort with a single
symbol case, as explained in the next section).

2. WithD denoting data terms and F “function” terms, i.e., applied schemes, yields the conventions of
Table 2 in HACS rules. Note that one can have several constraints on a single (data or function) term, as
long as they are all properly declared for the appropriate sort or scheme, respectively.

8.3 EXAMPLE. Figure 4 illustrates how an environment can be synthesized and then inherited. The HACS
script implements variable substitutions of mutually recursive bindings, which is essentially achieved by two
“passes,” one for synthesizing an environment that contains the collected bindings, and a second pass that
actually distributes and applies the collected (now inherited) environment to the target variable. The key
rule is in line 22, where the environment that has been synthesized in b is then copied over to the inherited
attribute e to the Apply scheme.
The following code tests that the lookupmechanism is truly recursive:
$ hacs LetrecMap.hx
. . .

$./LetrecMap.run --scheme=Reduce --term="a:b b:c in a"
c
$./LetrecMap.run --scheme=Reduce --term="b:c a:b in a"
c

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 23

Figure 4: Synthesizing and then inheriting an environment (examples/LetrecMap.hx).

1module org.crsx.hacs.samples . LetrecMap {
2// Syntax.
3token ID | [a−z][a−z0−9_]* ;
4sort B | J 〈ID〉 : 〈ID〉 〈B〉 K | JK ;
5main sort P | J 〈B〉 in 〈ID〉 K ;
6sort Out | J〈ID〉K ;
8// Synthesize environment.
9attribute ↑b{ID:ID} ;
10sort B | ↑b ;
11J 〈ID#v1〉 : 〈ID#v2〉 〈B#B ↑b{:#b}〉 K ↑b{:#b} ↑b{#v1 : #v2} ;
12J K ↑b {} ;
14// Environment and application on variable.
15attribute ↓e{ID:ID} ;
16sort Out | schemeApply(ID) ↓e ;
17Apply(#v) ↓e{#v : #v2} → Apply(#v2) ;
18Apply(#v) ↓e{¬#v} → J 〈ID#v〉 K ;
20// Main makes sure list is synthesized and passes control to conversion.
21sort Out | schemeReduce(P) ;
22Reduce(J 〈B#B ↑b{:#b}〉 in 〈ID#v〉 K) → Apply(#v) ↓e{:#b} ;
23}

Figure 5: SDD for type checking.

PRODUCTION SEMANTIC RULES
S → id := E1;S2 E1.e = S.e;S2.e = Extend(S.e, id.sym,E1.t) (S1)
| { S1 } S2 S1.e = S.e;S2.e = S.e (S2)
| ε (S3)

E → E1 + E2 E1.e = E.e;E2.e = E.e;E.t = Unif(E1.t, E2.t) (E1)
| E1 ∗ E2 E1.e = E.e;E2.e = E.e;E.t = Unif(E1.t, E2.t) (E2)
| int E.t = Int (E3)
| float E.t = Float (E4)
| id E.t = if Defined(E.e, id.sym) (E5)

then Lookup(E.e, id.sym)

else TypeError

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 24

Figure 6: HACS code for type analysis.

1sort Type | Int | Float | TypeError
2| schemeUnif(Type,Type) ;
4Unif(Int , Int) → Int;
5Unif(#t1 , Float) → Float;
6Unif(Float , #t2) → Float;
7default Unif(#1,#2) → TypeError; // fall-back

9attribute ↑t(Type); // synthesized expression type
10sort Exp | ↑t;
12J (〈Exp#1 ↑t(#t1)〉 + 〈Exp#2 ↑t(#t2)〉) K ↑t(Unif(#t1,#t2));
13J (〈Exp#1 ↑t(#t1)〉 * 〈Exp#2 ↑t(#t2)〉) K ↑t(Unif(#t1,#t2));
14J 〈INT#〉 K ↑t(Int);
15J 〈FLOAT#〉 K ↑t(Float);
16// Missing case: variables – handled by Ee below.

18attribute ↓e{ID:Type }; // inherited type environment
19sort Exp | scheme Ee(Exp) ↓e ; // propagates e over Exp

21// These rules associate t attribute with variables (missing case above).
22Ee(J〈ID#v〉K) ↓e{#v : #t} → J〈ID#v〉K ↑t(#t);
23Ee(J〈ID#v〉K) ↓e{¬#v} → errorJUndefined identifierK ;
25Ee(J〈Exp#1〉 + 〈Exp#2〉K ↑#syn) → J 〈Exp Ee(#1)〉 + 〈Exp Ee(#2)〉 K ↑#syn ;
26Ee(J〈Exp#1〉 * 〈Exp#2〉K ↑#syn) → J 〈Exp Ee(#1)〉 * 〈Exp Ee(#2)〉 K ↑#syn ;
27Ee(J〈INT#〉K ↑#syn) → J〈INT#〉K ↑#syn ;
28Ee(J〈FLOAT#〉K ↑#syn) → J〈FLOAT#〉K ↑#syn ;
30sort Stat | scheme Se(Stat) ↓e ; // propagates e over Stat

32Se(J〈ID#v〉 := 〈Exp#1〉; 〈Stat#2〉K ↑#syn)
33→ SeB(J〈ID#v〉 := 〈Exp Ee(#1)〉 ; 〈Stat#2〉K ↑#syn);
34{
35| scheme SeB(Stat) ↓e; // helper scheme for assignment after expression type analysis
36SeB(J〈ID#v〉 := 〈Exp#1 ↑t(#t1)〉 ; 〈Stat#2〉 K ↑#syn)
37→ J〈ID#v〉 := 〈Exp#1〉; 〈Stat Se(#2) ↓e{#v : #t1}〉K ↑#syn ;
38}
40Se (J { 〈Stat#1〉 } 〈Stat#2〉 K ↑#syn) → J { 〈Stat Se(#1)〉 } 〈Stat Se(#2)〉 K ↑#syn ;
42Se (J K ↑#syn) → J K ↑#syn ;

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 25

The examples presented thus far have very simple attribute dependencies. A final example demonstrates
more complicated attribute dependencies.
8.4 EXAMPLE. Figure 5 shows amore realistic SDD for type checking, and Figure 6 shows the
corresponding HACS. Here are the steps followed to obtain this script:
1. Lines 1–7 define the Type semantic data sort along with the helper Unif semantic function as
previously, except here extendedwith a TypeError case.

2. Lines 9 and 10 define the synthesized type t on expression data, and lines 12–15 give the type
synthesis rules except for typing variables, to be described later. This makes it clear that type synthesis
cannot happen until variable occurrences are typed. In the SDD, this corresponds to all the t-assignments
except the one in (E5), which depends onE.e .

3. Line 18 declares the inherited environment attribute, and line 19 associates it with the recursive
scheme Ee on expressions.

4. Lines 21–28 give the environment propagation rules for expressions. Specifically notice how there are
two cases for identifier, line 22 and 23, corresponding to whether the identifier is defined in the
environment or not, with the latter resulting in an errormessage in special HACS form. Also notice how
the recursive rules in lines 25–28 take care to preserve all synthesized attributes on the terms that are
traversed by using a catch-all ↑#syn constraint.

5. In total, lines 9–28 fully capture rules (E1–E5). The HACS specification adds a condition on evaluation:
first apply the environment, and then synthesize the type.

6. Line 30 declares a recursive scheme carrying the e attribute over statements, and lines 40 and 42 are
simple recursive rules for the propagation of e corresponding to (S2–S3).

7. Rule (S1) is slightly more complicated, because the inherited attribute has non-trivial dependencies. It
is essential to know the dependency relationship of the attributes to devise a recursive strategy for the
attribute evaluation. Recall the following (realistic) dependency for (1): “TheE2.t attribute cannot be
computed until afterE2.e has been instantiated (and recursively propagated).” In that case, one has to
evaluate (S1) in two steps:
(a) DoE2.e = S.e , establishing the precondition for allowing the system to computeE2.t .
(b) When the system has computedE2.t , then do S3.e = Extend(S.e, id1.sym,E2.t).
These two steps are achieved by having an extra carrier scheme, SeB, which is locally declared, so that
Se and SeB can handle the two steps above: first Se, in lines 32–33, copies e just toE1 (from (S1)), and
then chains to SeB.

8. The helper scheme, SeB declared in line 35, is set up towait for the synthesized t attribute (line 36) to
be computed forE1 and only then replaces the termwith a new one to compute the S2 part with an
extended environment (line 37).

The environment helpers become translated into the native HACS environment patterns from Table 2 as
follows:
• A “Defined(N.e, x)” test is encoded by having two rules: one for the “true” branchwith the constraint
↓e{#v} in a pattern, and one for the “false” case with the constraint ↓e{¬#v} in the pattern.

• “Lookup(N.e, x)” is encoded by adding a constraint ↓e{#v:#} in a pattern, which then binds the
meta-variable # to the result of the lookup. (This will imply the “defined” pattern discussed above.)

• “Extend(N.e, x, V)” is encoded by adding a constraint ↓e{#v:V} in the replacement.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 26

Figure 7: λ calculus (examples/Lambda.hx).

1module org.crsx.hacs.samples . Lambda {
2space [\t\n] ;
3token ID | [a−z] [_0−9]* ;
5main sort T
6| Jλ 〈ID binds x〉 . 〈T[x as T]〉K // abstraction
7| scheme J〈T@1〉 〈T@2〉K@1 // application
8| symbol J〈ID〉K@2 // variable occurrence
9| sugar J(〈T#〉)K@2→ # ;
11J(λ x . 〈T#1[TJxK]〉) 〈T#2〉K→ #1[T#2] ;
12}

9. HIGHERORDERABSTRACT SYNTAX
The examples thus far have analyzed and translated abstract syntax trees with structure and symbols. The
next order of business is to construct new structures with new scopes, or copied fragments with scopes
inside. These are the features where the “H” of HACSmatter.
9.1 EXAMPLE (untyped λ calculus). A simple example of a system that does rewriting of “higher order”
terms is the classic λ calculus. The λ calculus is specified in HACS as shown in Figure 7.
• The specification has properties like others presented above: it is amodule (lines 1 and 12); it has a
lexical specification of spacing (line 2) and identifiers (line 3); it has amain sort (line 5) of terms T; the
term grammar uses@ precedencemarkers (lines 7–9) and syntactic sugar for grouping (line 9); the
term has one scheme, whichmeans that there can be rules for application (line 7), which is so basic in λ
calculus that it is denoted by simple concatenation.

• The first syntax production (line 6) is different: “| Jλ〈ID binds x〉. 〈T[x as T]〉K” has several new
constructs inside the syntax brackets:
– The first, 〈ID binds x〉, is just like 〈ID〉 by itself but marks this particular identifier as being a binder,
which is used in a special way, and for the scope of the production is named x (in case there is more
than one).

– The second, 〈T[x as T]〉, is just like 〈T〉 by itself but marks this particular instance of T as the scope
for the binder named x, with the added information that all occurrences of the bound variable
should (also) be considered to be of sort T.

• The third production (line 8) is also special: it declares that if a term is a simple ID, then in fact it is a
symbol, which is required for identifiers to occur bound as sort T.

• Finally, the defined scoping in the classic β rewrite rule is used for our one scheme in line 11: it
expresses that a λ termwhich is an application (of the scheme declared in line 7) where the first
subterm is a λ-abstraction (declared in line 6) can be rewritten.

The sample can be run the usual way:
$ hacs Lambda.hx
. . .

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 27

$./Lambda.run --sort=T --term=’(λx.x)y’
y

More formally, HACS provides support for manipulating scoped terms using higher-order abstract syntax
(HOAS) [20] through some new constructs:
• Outside syntax, HACS recognizes identifiers starting with a lowercase letter as variables.
• In concrete syntax grammar productions, for a token T and a HACS variable x , one can use the special
reference 〈T binds x〉 to define that this particular instance of T is a binder, with the variable x as the
label to indicate the scoping.

• In a grammar production with a 〈T binds x〉 reference, there can be one reference of the form
〈S[x asS′]〉. This is like a reference 〈S〉 but with the added information that all occurrences of the
binder labeled x must occur inside the S subterm, and furthermore that the occurrences will have the
sort S′. This implies that theremust in addition be a grammar production like sortS′ | symbol J〈T 〉K, to
allow the occurrences to be properly parsed.

• Rulesmust use the native variable form (no 〈〉s) for binders.
• Patterns (left of→) should include references to scoped subterms using a special notation where
scopedmeta-variables are “applied” to the bound variables in []s, looking something like this:
J. . . 〈S#[S′JxK]〉 . . .K.

• Replacements (right of→) should always have scopedmetavariables applied to the same number of
arguments in []s as the corresponding pattern sets up. The result of such an application is to replace all
bound occurrences of the variable that was indicated in the pattern with whatever is used in the
replacement.

The formal rules are rather dense, however, as will now become apparent with some examples, their use is
really just a compact way of encoding the usual notions of binders and parameter substitution that are
familiar from ordinary programming.
9.2 EXAMPLE. Consider the following variation of the grammar in Example 4.1, whichmakes the scoping
rules of this little assignment language explicit.

1main sort Stat | J 〈ID binds v〉 := 〈Exp〉 ; 〈Stat[x as Exp]〉 K
2| JK ;
4sort Exp | J 〈Exp〉 + 〈Exp@1〉 K
5| J 〈Exp@1〉 * 〈Exp@2〉 K@1
6| J 〈INT〉 K@2
7| J 〈FLOAT〉 K@2
8| symbol J〈ID〉 K@2
9| sugar J (〈Exp#〉) K@2→ Exp# ;

The HOAS constructs are only present in lines 1 and 8 of the grammar, and the differencemay seem
irrelevant. However, consider these simple rules that duplicate and append statements (such a rule may be
useful in loop hoisting code, for example):

10sort Stat | schemeDuplicate(Stat) | schemeAppend(Stat,Stat) ;
11Duplicate(#S) → Append(#S, #S) ;
12Append(JK , #S2) → #S2 ;
13Append(J old := 〈Exp#2〉; 〈Stat#3[old]〉 K , #S2)
14→ J new := 〈Exp#2〉; 〈Stat Append(#3[new] , #S2〉 K ;

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 28

Figure 8: Definitions of Call-by-Value Continuation Passing Style (examples/CPS.hx).

1// samples/CPS.hx: Continuation-passing for 2-level λ-calculus in -*-hacs-*-
2module org.crsx.hacs.samples .CPS {
4// Tokens.
5space [\t\n] ;
6token ID | [a−z] [_0−9]* ; // single-letter identifiers

8// λ Calculus Grammar.
9main sort E
10| J λ 〈ID binds x〉 . 〈E[x as E]〉 K | J 〈E@1〉 〈E@2〉 K@1
11| symbol J〈ID〉 K@2| sugar J (〈E#〉) K@2→# ;
13// One-pass CBV CPS.
14| schemeCPS(E) ;
15CPS(#) → J λk .{〈E#〉 | m .k m} K ;
16| scheme J{〈E〉 | 〈ID bindsm〉 . 〈E[m as E]〉} K@2;
17J {v | m . 〈E#F[m]〉} K → #F[v] ;
18J {λx.〈E#[x]〉 | m . 〈E#F[m]〉} K→#F[EJ λx.λk .{〈E#[x]〉 | m .k m} K] ;
19J {〈E#0〉 〈E#1〉 | m . 〈E#F[m]〉} K→J{〈E#0〉 | m .{ 〈E#1〉 | n .m n (λa.〈E#F[a]〉)}} K ;
20}

Notice how the pattern of the last rule in lines 13–14 explicitly calls out the used binding: the actual variable
that is used in the program is referenced in the pattern as old, and the patternmatching should also keep
track of all the occurrences inside the scope, which is #3, by writing it as #3[old]. (This exploits the
aforementionedHACS hack, where HACS variables that are also “raw” variables can bewritten in this short
form instead of the full #3[ExpJoldK].) This setupmakes it possible to now systematically replace the symbol
with a new and fresh one, referred to as new in the replacement in line 16, but which the systemwill in fact
replace with a new and unique name, both the binder and all the in-scope occurrences inside #3. This ensures
that there is no so-called “variable capture,” i.e., that occurrences of the old name inside #S2 accidentally
become double-bound.
Interestingly, HOAS alsomakes it impossible to have variables “escape” from their scope. A rule in the old

grammar from Example 4.1might look like
Flip(J 〈ID#v1〉 := 〈Exp#2〉; 〈Stat#3〉 K) → J { 〈Stat#3〉 } 〈ID#v1〉 := 〈Exp#2〉; K ;

which will take uses of #v1 inside #3 andmove them outside of their scope. This will give a syntax error
possible with HOASwithout explicitly substituting the occurrences of the bound variable with something
else in the copy, which would expose the error. (Youmay think that this is an obviousmistake that no one
wouldmake, but this sort of variable escaping is a real problem that leads to bugs in compilers.) The use of
HOAS in HACS in fact allows the full range of methods used in higher-order rewriting [10, 13], a very
powerful mechanism.
9.3 EXAMPLE. Next consider a real example from the literature [6]. Figure 8 shows a system for
transforming λ-terms to continuation-passing style with call-by-value evaluation semantics. Lines 14–19
specify a one-pass variant of continuation-style conversion. Notice how the transformation defines a
syntactic helper scheme tomake the recursive composition easier to express.
The script compiles and generates code as follows:

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 29

$ hacs CPS.hx
. . .

$./CPS.run --scheme=CPS --term="(λx.x x)"
λ k . k (λ x . λ k_85 . x x (λ m_40 . k_85 m_40))

Finally, sometimes symbols serve as labels or for some other purpose, when there is a need for globally
unique symbols. This creates a dilemma: writing JxK for some symbol sort, how to distinguish between the
actual variable written x and a variable that is automatically renamed to be globally unique? By default, HACS
follows the following rules:
• Every token that is parsed to be of a symbol sort is automatically renamed to a fresh variable name. (If
used in a pattern, the fresh namewill match the actual symbol that is present in the term, and thus in
essence really be a placeholder for an existing symbol.)

• If a rule is prefixedwith the option [global x], then the symbol xwill not be subject to this automatic
conversion.

10. COMPILE-TIMECOMPUTATIONS
There is sometimes a need to compute helper values, most commonly for counting. HACS supports this
through a dedicated sort, Computed, which has special syntax for operations on primitive values.
Themechanism is quite simple: in rule replacements, arguments of sort Computed can contain

expressions in JK of the shape summarized in Table 3. In the table,E in general stands for “any expression
above the nearest line,” however, there are exceptions: the binary operators in themultiplicative and
additive groups in themiddle have the usual left recursive syntax, so J1+2+3K is the same as J(1+2)+3K, and
anyE inside some kind of parenthesis can, in fact, come from the entire table.
Notice that for Computed, meta-variables are part of the syntax: essentially #x is used instead of

“〈Computed#x〉,” which is not permitted, inside the special syntax.
Also, since all computed parts of a rule are evaluated as soon as the rule is expanded, only use this for

calculations that can be safely computed in any case where the pattern of the rule matches.
10.1 EXAMPLE (count). Consider the list from Example 5.8. The following computes the length of the list,
using a helper.

sort Computed | scheme ListLength(List) | scheme ListLength2(List, Computed) ;
ListLength(#) → ListLength2(#, J0K) ;
ListLength2(J 〈Elem#1〉 〈List#2〉 K , #n) → ListLength2(#2, J #n + 1 K) ;
ListLength2(J K , #n) → #n ;

Note how the declaration of the helper sets up the use of the Computedmechanism.
10.2 EXAMPLE (string operations). Figure 9 illustrates working with strings. Notice the following:
• There is a strict distinction between the tokenWORD and the sortWord. Something of sortWord can
bewritten in syntax brackets—like JXK in the Test rule.

• Amap attribute—called dup in the example—can have a token sort as the key sort, hereWORD.
• The Test2 rules have two cases for processing a word: one for a word that is previously unmapped, and
one for a word that was alreadymapped.

• A new token is constructed for each word. This is achievedwith a variant of the 〈WORD. . . 〉 notation:
normally, in such a construction, the . . . must be something of token sortWORD; however, as a special
case, it is permissible to use an expression of Computed sort, as in lines 18 and 21 here.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 30

Table 3: Summary of Computed syntax.

Expression Explanation
#x refer to Computed value or token string#x

$#x extract integer value from token string#x

%#x convert integer Computed value#x to string value
"foo" 42 0x2A literal strings and integers

(E) grouping
E [E:E] substring (optional indices are [first:after-last]with 0-based indexing)
+E -E unary integer plus andminus

~E bitwise not
lengthE length of (Unicode) string
up-caseE convert string to upper case
down-caseE convert string to lower case
escapeE convert all special characters to their Java escape equivalent
unescapeE convert all Java escape sequences to special characters
trimE remove leading and trailing spacing
T E generate constants in user’s type T

E*E E/E E%E integer multiplication, division, modulo
E&E bitwise and

E<<E E>>E bitwise shift left and right
E+E E-E integer sum and difference

E|E EˆE E\E bitwise or, exclusive or, subtraction
E@E string concatenation

E=E E/=E integer equality and inequality
E<E E<=E integer less than and less than or equal
E>E E>=E integer greater than and greater than or equal
E same-asE string equality
E containsE right string is contained as a substring of left

E starts-withE right string is a prefix of left
E ends-withE right string is a suffix of left

E?E:E ternary test

• Lines 26–27 define the “word concatenation helper” of sort Computedwith an expression that
concatenates the two tokens as strings. This only works with arguments of token sort.

Here is a run illustrating the effect:
$ hacs MakeToken.hx
...
$./MakeToken.run --scheme=Test --term="Hello Hello Hello John"
X_Hello_x_x_John

Notice that it is not presently possible to nest computations, i.e., insert a value in a Computed expression
that is computed by user functions (this will change in future versions of HACS). However, it is still possible to
use helpers to achieve nested computations, as illustrated by the simple desk calculator in the following
example.
10.3 EXAMPLE. Figure 10 implements a simple desk calculator. Notice how it uses the $marker to import a
token as an integer value of sort Computed. Here is a run:
Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 31

Figure 9: examples/MakeToken.hx.

1module org.crsx.hacs.tests .MakeToken {
2// Input grammar.
3tokenWORD | [A−Za−z.!?_]+ ;
4sort Word | J〈WORD〉K ;
5main sortWords | J〈Word〉 〈Words〉K | JK ;
7// Main scheme: concatenate words but replace repetitions with "x".
8sort Word | scheme Test(Words) ;
9Test(#ws) → Test2(#ws , JXK);
11// Map encountered words to "x".
12attribute ↓dup{WORD : WORD};
14// The aggregator.
15sort Word | scheme Test2(Words,Word) ↓dup ;
17Test2(J 〈WORD#w1〉 〈Words#ws〉 K , J〈WORD#w〉K) ↓dup{¬#w1}
18→ Test2(#ws , J〈WORD Concat(#w , #w1)〉K) ↓dup{#w1 : JxK} ;
20Test2(J 〈WORD#w1〉 〈Words#ws〉 K , J〈WORD#w〉K) ↓dup{#w1 : #w2}
21→ Test2(#ws , J〈WORD Concat(#w , #w2)〉K) ;
23Test2(J K , #w) → #w ;
25// Helper to concatenate two words.
26sort Computed | schemeConcat(WORD,WORD) ;
27Concat(#w1 , #w2) → J #w1 @"_" @#w2 K ;
28}

$ hacs Desk.hx
...
$./Desk.run --scheme=Eval --term="1+2*3/(2-1)"
7.0

10.4 EXAMPLE. It is possible to select between structures with the Computed ternary choice operator and
special “pass-through” parameters. Consider the following definition:

sort S | scheme IfPositive(Computed, S , S) | schemeComputedToS(Computed);
IfPositive(#n , #1, #2)→ ComputedToS(J #n >= 0 ? #1 : #2 K);
ComputedToS(#s) → #s;

Note the use of the extra “cast-like” function ComputedToS, which ensures that our ternary expression is
computed (because the argument is Computed) yet is returned as something of sort S. This would appear to
not type check, but is explicitly allowed byHACS to permit passing term structures through Computed
expressions.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 32

Figure 10: examples/Desk.hx.

1module edu.nyu.cs.cc .Desk {
3// Syntax.

5tokenNUM | [0−9]+ ;
7sort E
8| J 〈NUM〉 K@5
9| sugar J (〈E#〉) K@5→ #
11| J 〈E@2〉 / 〈E@3〉 K@2
12| J 〈E@2〉 * 〈E@3〉 K@2
14| J 〈E@1〉 − 〈E@2〉 K@1
15| J 〈E@1〉 + 〈E@2〉 K@1
16;
18// Evaluation.

20sort Computed | scheme Eval(E) ;
21Eval(J 〈NUM#〉 K) → J $# K ;
23Eval(J 〈E#1〉 + 〈E#2〉 K) → Plus(Eval(#1), Eval(#2)) ;
24| scheme Plus(Computed, Computed) ;
25Plus(#1, #2)→ J #1 + #2 K ;
27Eval(J 〈E#1〉 − 〈E#2〉 K) → Minus(Eval(#1), Eval(#2)) ;
28| schemeMinus(Computed, Computed) ;
29Minus(#1, #2)→ J #1− #2 K ;
31Eval(J 〈E#1〉 * 〈E#2〉 K) → Times(Eval(#1), Eval(#2)) ;
32| scheme Times(Computed, Computed) ;
33Times(#1, #2)→ J #1 * #2 K ;
35Eval(J 〈E#1〉 / 〈E#2〉 K) → Divide(Eval(#1), Eval(#2)) ;
36| schemeDivide(Computed, Computed) ;
37Divide(#1, #2)→ J #1 / #2 K ;
38}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 33

11. EXAMPLES
Once the structure of a specification is clear, it is possible to start analyzing andmanipulating the internal
representation. This section presents some examples of this.
Figure 11: examples/IsCat.hx: Finding cats.

1module org.crsx.hacs.samples . IsCat {
3tokenWORD | [A−Za−z]+ ;
4main sortWord | J〈WORD〉K ;
5main sortVar | symbol J〈WORD〉K ;
7sort Boolean | JTrueK | JFalseK ;
9sort Boolean | scheme IsCat(Word) ;
10IsCat(#word) → IsSameWord(#word , JcatK) ;
12sort Boolean | scheme IsSameWord(Word,Word) ;
13IsSameWord(#, #) → JTrueK ;
14default IsSameWord(#1, #2)→ JFalseK ;
15}

11.1 EXAMPLE (finding cats). The small example in Figure 11 illustrates how to test for equality using a
non-linear rule in line 12 combinedwith a “catch-all” default rule in line 13.
It is not permissible to use JcatK directly in a pattern; patterns are restricted to syntactic cases of the

grammar. Also, note the definition of the Boolean sort with syntactic values rather than just constructors:
this allows them to be printed.
Here is a possible run using this command:
$ hacs IsCat.hx
$./IsCat.run --scheme=IsCat --term="dog"
False
$./IsCat.run --scheme=IsCat --term="cat"
True

11.2 EXAMPLE. Figure 12 illustrates the different conventions for using plain tokens—here uppercase
words—and using symbols—here lowercase words. In the comments, notice the difference in use in rule
cases and asmap keys and set members.

$ hacs Symbols.hx
$./Symbols.run --scheme=Test --term="A A a a * A * a"
A A 2 a a * s A 3 s_39 a * END END END s_46 s_46 s_46

Notice the following:
• Input tokens and symbols passed through, e.g., A and a.
• Repeated input tokens followed by count, e.g., A 2 and A 3.
• Repeated input symbols followed by star, e.g., a *.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 34

Figure 12: examples/Symbols.hx: Variations on symbols.
1module org.crsx.hacs.tests .Symbols { //-*-hacs-*-
3tokenUP | [A−Z]+ ; // upper case words are tokens
4token LO | [a−z]+ [0−9_]* ; // lower case words with optional index
5token INT | [0−9]+ ; // integer

7sort S | symbol J〈LO〉K ; // symbol sort

9// Input and output is list of words.
10sort W | J〈UP〉K | J〈S〉K | J*K | J〈INT〉K ;
11main sort L | J〈W〉 〈L〉K | JK ;
13// Main scheme!
14sort L | scheme Test(L) ; Test(#) → Emit(#) ;
16// Inherited attribute to pass map of next token counts.
17attribute ↓ups{UP : Computed} ;
19// How to initialize counters.
20sort Computed | scheme Two ; Two → J2K ;
22// Inherited attribute with set of seen symbols.
23attribute ↓los{S} ;
25// Helper scheme, passing counts of tokens and symbols!
26sort L | scheme Emit(L) ↓ups ↓los ;
28// Rules for tokens (not seen before and already seen).
29Emit(J 〈UP#id〉 〈L#〉 K) ↓ups{¬#id}
30→ J 〈UP#id〉 〈L Emit(#) ↓ups{#id : Two}〉 K ;
31Emit(J 〈UP#id〉 〈L#〉 K) ↓ups{#id : #n}
32→ J 〈UP#id〉 〈INT#n〉 〈L Emit(#) ↓ups{#id : J #n + 1 K}〉 K ;
34// Rule for symbols (not and already seen) - note how an exemplar symbol is used.
35Emit(J s 〈L#〉 K) ↓los{¬JsK} → J s 〈L Emit(#) ↓los{JsK}〉 K ;
36Emit(J s 〈L#〉 K) ↓los{JsK} → J s * 〈L Emit(#)〉 K ;
38// Rule to generate a random symbol.
39Emit(J * 〈L#〉 K) → J s 〈L Emit(#)〉 K ;
41// Rule to skip existing counts.
42Emit(J 〈INT#n〉 〈L#〉 K) → Emit(#) ;
44// Rule to finish off with thrice END and a symbol.
45Emit(JK) → J END END END s s s K ;
46}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 35

• Rule symbols generated fresh for each use of a rule replacement, e.g., s 6= s_30 6= s_46.
• Generated symbols consistent within each replacement, e.g., s_46.

Figure 13: examples/WordSet.hx: Sets ofWords.

1module org.crsx.hacs.samples .WordSet {
3// Simple word membership query.
4main sortQuery | J 〈WORD〉 in 〈List〉 K ;
5sort List | J 〈WORD〉 , 〈List〉 K | J 〈WORD〉 K ;
6tokenWORD | [A−Za−z0−9]+ ;
8// Collect set of words.
9attribute ↑z{WORD} ;
10sort List | ↑z ;
11J 〈WORD#w〉, 〈List#rest ↑z{:#ws}〉 K ↑z{:#ws} ↑z{#w} ;
12J 〈WORD#w〉 K ↑z{#w} ;
14// We’ll provide the answer in clear text.
15sort Answer
16| JYes , the list has 〈WORD〉 . K
17| JNo, the list does not have 〈WORD〉 . K
18;
20// Check is main query scheme, which gives an Answer.
21sort Answer | schemeCheck(Query) ;
23// The main program needs the synthesized list before it can check membership.
24Check(J 〈WORD#w〉 in 〈List#rest ↑z{#w}〉 K) → JYes , the list has 〈WORD#w〉.K ;
25Check(J 〈WORD#w〉 in 〈List#rest ↑z{¬#w}〉 K)
26→ JNo, the list does not have 〈WORD#w〉.K ;
27}

11.3 EXAMPLE (set of words). One common task is to synthesize a set from some syntactic construct and
subsequently search the set. Figure 13 shows a small toy syntax that allows simple queries of word set
membership.
The example uses some newmechanisms for synthesizing the set:
• A helper z synthetic attribute contains a set of word tokens, which is indicated by the attribute
declaration ↑z{WORD} in line 9.

• Line 10 associates a z set with all values of the syntactic sort List.
• Lines 11 and 12 capture the synthesis of the set. Line 12 captures the simple case where a singleton list
synthesizes a singleton set.

• Line 11 has a fewmore notations in play. First, the pattern part of the rule includes the inner pattern
↑z{:#ws}. This specifies that the special meta-variable “:#ws” captures all the existingmembers of the z
set. Second, the result of the rule is to add two new things to the top level of the rule: ↑z{:#ws} ↑z{#w}.
This adds both the existingmembers (just matched) and the one newmember #w to the result set.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 36

• Lines 24–26 are almost the same: the one difference is that 24matches sets that contain the #wword,
whereas 25–26matches sets that do not because of the¬ logical negation sign.

The example runs as follows:
$ hacs WordSet.hx
$./WordSet.run --scheme=Check --term="a in a,b,b,a"
Yes, the list has a.
$./WordSet.run --scheme=Check --term="Foo in Bar"
No, the list does not have Foo.

11.4 EXAMPLE (map of words). Figure 14 shows how amap can be synthesized and then used as an
environment. The pattern is similar to the set example, except this case not only synthesizes themap
attributem but also serves to “copy” it over to an inheritedmap—an environment—e. Notice these extras:
• Themap attribute is synthesized in lines 12–13, just like the set attribute was in the previous example.
The only difference is that themap of course includes both a key and value.

• Line 23 simply captures all the “mappings” of them attribute with the special :#ms pattern, which is
then reused to populate the e environment.

• Lines 26–34 combine the distribution of the inheritedmapwith a recursive transformation that
replaces words. The two rules for an initialWORD aremutually exclusive because the pattern in line
26 requires the word to be present with amapping in the e attribute, whereas the pattern in line 31
requires that the word not be present.

Here is a run demonstrating the program:
$ hacs WordMap.hx
$./WordMap.run --scheme=Substitute --term="a:b in a b b a"
b b b b
$./WordMap.run --scheme=Substitute --term="k:v in a b c"
a b c

11.5 EXAMPLE (word substitution). Figure 15 shows a HACS program to collect substitutions from a
document and apply them to the entire document. Notice the following:
• This example uses a typical two-pass strategy: first, one pass to collect the substitutions into a
synthesized attribute, then a second pass where the full list of substitutions is applied everywhere.

• A choice has beenmade to synthesize themap as a data structure instead of a native HACSmap (as in
the previous Example 11.4) because of the need here to append twomaps (in line 42), which is not
supported for the nativemaps. The synthesis happens in lines 41–49.

• The synthesizedmap is translated in list form into a native HACSmap before starting the second pass.
Notice howRun2 starts by recursing over the list of substitutions, inserting each into the carried
inherited envmap. Since themap is consumed from left to right, the latest substitution for any variable
is always used.

• Since the inheritance schemes for env in lines 53–63 are doing a recursive traversal of the term, a
benefit accrues from building the actual substitutions into the traversal.

• The inheritance rules carefully preserve the synthesized attributes only when the term does not
change. In the present case, this is manifest by just the rule in line 59, not including the ↑#smarker to
capture and copy the synthesized attributes; in general, this should be considered for every situation.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 37

Figure 14: examples/WordMap.hx: ApplyWord Substitution asMap.

1module org.crsx.hacs.samples .WordMap {
3// Simple word map over list.
4main sortQuery | J 〈Map〉 in 〈List〉 K ;
5sort List | J 〈WORD〉 〈List〉 K | J K ;
6sort Map | J 〈WORD〉 : 〈WORD〉 , 〈Map〉 K | J 〈WORD〉 : 〈WORD〉 K ;
7tokenWORD | [A−Za−z0−9]+ ;
9// Collect word mapping.
10attribute ↑m{WORD:WORD} ;
11sort Map | ↑m ;
12J 〈WORD#key〉 : 〈WORD#value〉, 〈Map#map ↑m{:#ms}〉 K ↑m{:#ms} ↑m{#key:#value} ;
13J 〈WORD#key〉 : 〈WORD#value〉 K ↑m{#key:#value} ;
15// Main program takes a Query and gives a List.
16sort List | scheme Substitute(Query) ;
18// Environment for mappings during List processing.
19attribute ↓e{WORD:WORD} ;
20sort List | scheme ListE(List) ↓e ;
22// The main program needs the synthesized map before it can substitute.
23Substitute(J 〈Map#map ↑m{:#ms}〉 in 〈List#list〉 K) → ListE(#list) ↓e{:#ms} ;
25// Replace any mapped words.
26ListE(J 〈WORD#word〉 〈List#words〉 K ↑#syn) ↓e{#word : #replacement}
27→
28J 〈WORD#replacement〉 〈List ListE(#words)〉 K↑#syn
29;
31ListE(J 〈WORD#word〉 〈List#words〉 K ↑#syn) ↓e{¬#word}
32→
33J 〈WORD#word〉 〈List ListE(#words)〉 K↑#syn
34;
36ListE(J K ↑#syn) → J K ↑#syn ;
37}

Here is a runwith this system:
$ hacs WordSubst.hx
$./WordSubst.run --scheme=Run --term="a=1 a"
a=1 1
$./WordSubst.run --scheme=Run --term="b a {a=1 b=2}"
2 1 a=1 b=2
$./WordSubst.run --scheme=Run --term="{a=1 b=2 c=3} a b c {a=4} a b c"
{ a=1 b=2 c=3 } 4 2 3 { a=4 } 4 2 3

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 38

Figure 15: examples/WordSubst.hx: Combining list, maps, and transformation.
1module org.crsx.hacs.samples .WordSubst {
3// Grammar.
4sort Units | J 〈Unit〉 〈Units〉 K | JK ;
5sort Unit | J〈Variable〉=〈NAT〉K | J〈Variable〉K | J〈NAT〉K | J { 〈Units〉 } K ;
6sort Variable | symbol J〈ID〉K ;
8token ID | [A−Za−z]+ ;
9tokenNAT | [0−9]+ ;
10space [\ \t\n\r] ;
12// Helper Subst structure: lists of variable-NAT pairs.
13sort Subst | MoreSubst(Variable , NAT, Subst) | NoSubst ;
15// Append operation for Subst structures.
16| scheme SubstAppend(Subst, Subst) ;
17SubstAppend(MoreSubst(#var , #nat, #subst1), #subst2) →MoreSubst(#var , #nat, SubstAppend(#subst1 , #subst2)) ;
18SubstAppend(NoSubst , #subst2) → #subst2 ;
20// Attributes.
21attribute ↑subst(Subst) ; // collected Subst structure
22attribute ↓env{Variable:NAT} ; // mappings to apply

24// Top scheme.
25main sortUnits | schemeRun(Units) ;
26Run(#units) → Run1(#units) ;
28// Strategy: two passes.
29// 1. force synthesis of subst attribute.
30// 2. convert subst attribute to inherited environment (which forces replacement).

32| schemeRun1(Units) ;
33Run1(#units ↑subst(#subst)) → Run2(#units , #subst) ;
35| schemeRun2(Units, Subst) ↓env ;
36Run2(#units , MoreSubst(#var , #nat, #subst)) → Run2(#units , #subst) ↓env{#var : #nat} ;
37Run2(#units , NoSubst) → Unitsenv(#units) ;
39// Synthesis of subst.

41sort Units | ↑subst ;
42J 〈Unit #1 ↑subst(#subst1) 〉 〈Units #2 ↑subst(#subst2)〉 K ↑subst(SubstAppend(#subst1 , #subst2)) ;
43J K ↑subst(NoSubst) ;
45sort Unit | ↑subst ;
46Jv=〈NAT#n〉K ↑subst(MoreSubst(JvK , #n, NoSubst)) ;
47JvK ↑subst(NoSubst) ;
48J〈NAT#n〉K ↑subst(NoSubst) ;
49J { 〈Units#units ↑subst(#subst)〉 } K ↑subst(#subst) ;
51// Inheritance of env combined with substitution.

53sort Units | schemeUnitsenv(Units) ↓env ;
54Unitsenv(J 〈Unit#1〉 〈Units#2〉 K↑#s) → J 〈Unit Unitenv(#1)〉 〈Units Unitsenv(#2)〉 K↑#s ;
55Unitsenv(J K↑#s) → J K↑#s ;
57sort Unit | schemeUnitenv(Unit) ↓env ;
58Unitenv(Jv=〈NAT#n〉 K↑#s)→ Jv=〈NAT#n〉K↑#s ;
59Unitenv(JvK) ↓env{JvK:#n} → J〈NAT#n〉K ;
60Unitenv(JvK↑#s) ↓env{¬JvK} → JvK↑#s ;
61Unitenv(J〈NAT#n〉K↑#s) → J〈NAT#n〉K↑#s ;
62Unitenv(J { 〈Units#units〉 } K↑#s) → J { 〈Units Unitsenv(#units)〉 } K↑#s ;
63}

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 39

The last example shows how the latest substitution for a “wins.”

A. MANUAL
This appendix is an evolving attempt at giving a systematic description of HACS.
A.1MANUAL (grammar structure). AHACS compiler is specified as a single .hxmodule file with the following structure:
modulemodulename
{
Declarations
}

where themodulename should be a Java-style fully qualified class namewith the last component capitalized and the
same as the file base name, e.g., org.crsx.hacs.samples.First is an allowedmodule name for a specification stored
as First.hx. The individual sections specify the compiler, and the possible contents are documented in themanual blocks
below.
A.2MANUAL (lexical declarations). A token is declared with the keyword token followed by the token (sort) name, a |
(vertical bar), and a regular expression, which has one of the following forms (in order of increasing precedence):
1. Several alternative regular expressions can be combinedwith further | characters.
2. Concatenation denotes the regular expression recognizing concatenations of what matches the subexpressions.
3. A regular expression (of the forms following this one) can be followed by a repetition marker: ? for zero or one, +
for one ormore, and * for zero ormore.

4. A simple wordwithout special characters represents itself.
5. A string in single or double quotes represents the contents of the string except that \ introduces an escape code
that represents the encoded character in the string (see next item).

6. A stand-alone \ followed by an escape code represents that character: escape codes include the usual C and Java
escapes: \n, \r, \a, \f, \t, octal escapes like \177, special character escapes like \\, \', \", and Unicode hexadecimal
escapes like \u27e9.

7. A character class is given in [], with these rules for the contents of the brackets:
(a) If the first character is ^ then the character class is negated.
(b) If the first character (after ^) is] then that character is (not) permitted.
(c) A \ followed by an escape code represents the encoded character.
(d) The characters \’" should always be escaped (this is a bug).
(e) Two characters connected with a− (dash) represent a single character in the indicated (inclusive) range.
Note that a character class cannot be empty. However, [^] is permitted and represents all characters.

8. The . (period) character represents the character class [^\n].
9. A nested regular expression can be given in ().
10. An entire defined token T can be included (by literal substitution, so recursion is not allowed) by writing 〈T〉 (the

angle brackets are unicode characters U+27E8 and U+27E9). Tokens declared with token fragment can only be
used this way.

11. The special declaration space defines what constitutes white space for the generated grammar. (Note that this
does not influence what is considered space in the specification itself, even inside syntax productions.) A spacing
declaration permits the special alternative nested declaration for nested comments, illustrated by the following,
which defines usual C/Java style spacing with comments as used by HACS itself:
space [\t\f\r\n] | nested "/*" "*/" | "//" .* ;

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 40

Notice that spacing is not significant in regular expressions, except (1) in character classes, (2) in literal strings, and (3) if
escaped (as in \).
A.3MANUAL (syntactic sorts). Formally, HACS uses the following notations for specifying the syntax to use for terms.
1. HACS production names are capitalized words. For example, Exp for the production of expressions. The name of a
production also serves as the name of its sort, i.e., the semantic category that is used internally for abstract
syntax trees with that root production. If particular instances of a sort need to be referenced later they can be
disambiguatedwith a #i suffix, e.g., Exp#2, where i is an optional number or other simple word.

2. A sort is declared by one ormore sort declarations of the name, optionally followed by a number of abstract
syntax production alternatives, each starting with a |. A sort declaration sets the current sort for subsequent
declarations and, in particular, any stand-alone production alternatives. All sort declarations for a sort are
cumulative.

3. Double square brackets J. . . K (unicode U+27E6 and U+27E7) are used for concrete syntax but can contain nested
angle brackets 〈. . . 〉 (unicode U+27E8 and U+27E9) with production references like 〈Exp〉 for an expression (as
well as several other things to be described later). For example, J〈Exp〉+〈Exp〉K describes the formwhere two
expressions are separated by a + sign. Occurrences of tokens are referenced in the sameway.

4. Concrete syntax specification can include ¶ characters (Unicode U+00b6) to indicate where newlines should be
inserted in the printed output.

5. A@p for some natural number p is a precedence indicator, with higher numbers indicating higher precedence, i.e.,
tighter association. A precedence indicator can be added to a production reference (i.e., 〈Exp@2〉) or an entire
concrete syntax production (i.e., J〈Exp〉+〈Exp〉K@2), indicating that either the appropriate subexpression or the
entire alternative (as appropriate) is restricted to occur only at (at least) the specified precedence level. (For
details on the limitations of how the precedence and left-recursionmechanisms are implemented, see
Appendix C.)

6. A sugar J. . . K→. . . alternative specifies an equivalent form for existing syntax: anythingmatching the left
alternative will be interpreted the same as the right one (whichmust have been previously defined); references
must be disambiguated.

7. If a production contains a reference to a token, where furthermore the token is defined such that it can endwith
a sequence of _n units (an underscore followed by a count), then the sort case can be qualified as a symbol case,
which implies:
• instances of the token can be usedwith binds (see below),
• the sort with the case can be used as the as sort of scopes (see below), and
• the sort with the case can be used as a key sort of map attributes (actual keysmust be variables).

A.4MANUAL (parsed terms). The termmodel includes parsed terms.
1. Double square brackets J. . . K (unicode U+27E6 and U+27E7) can be used for concrete terms, provided the sort is
clear, either
(a) by immediately prefixing with the sort (as in ExpJ1+2K), or
(b) by using as the argument of a defined constructor (as IsType(JmytypeK)), or
(c) by using as an attribute value, or
(d) by using as a top-level rule pattern or replacement termwith a defined current sort.

2. Concrete terms can contain nested raw terms (see below) in 〈. . . 〉 (unicode U+27E8 and U+27E9). Such nested
raw termsmust have an explicit sort prefix.

3. The special term errorJ. . . Kwill print the error message embedded in J. . . K, where one is permitted to embed
symbol-declared variables in 〈. . . 〉. Note that error termswill be evaluatedwhen the rule is expanded, thus only
use errorwhenmatching the pattern of the rule is sufficient to produce the error.

A.5MANUAL (raw terms, schemes, and rules). “Raw” declarations consist of the following elements:

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 41

1. A constructor is a capitalized word (similar to a sort name but in a separate name space).
2. A variable is a lowercase word (subject to scoping, described below).
3. A sort can be given a semantic production as a | (bar) followed by a form, which consists of a constructor name,
optionally followed by a list of the subexpression sorts in parentheses.

4. A semantic production can be qualified as a scheme, whichmarks the declared construction as a candidate for
rewrite rules (defined below).

5. A raw term is either a construction, a variable use, or ameta-application, as follows:
(a) A construction term is a constructor name followed by an optional parenthesized ,-separated list of scope

arguments, which each consist of a term optionally preceded by an optional binder list of variables enclosed
in [] (dot). So in themost general case, a term looks like this:

C ([x11, . . . ,x1n1] t1 , . . . , [xm1, . . . ,xmnm] tm)

The “C-construction” is said to have the subterms t1, . . . , tm , and the aritym and ranks n1 . . . nm mustcorrespond to a semantic production. If present, the binder prefix of each introduces the specified
variables only for the appropriate subtermmodulo usual renaming, i.e., writing A([x,y].x, [x,y].y) and
A([a,b].a, [a,b].b) and even A([s,t].s, [t,s].s) all denote the same term following the
conventions ofα-equivalence. In a scope argument [x]t occurrences of x in t are said to be bound by the
binder.

(b) A variable use term is a variable, subject to the usual lexical scoping rules.
(c) Ameta-application term is ameta-variable, consisting of a # (hash) followed by a number or word and
optionally by ameta-argument list of ,-separated terms enclosed in []. Examples include #t1 (with no
arguments), #[a,b,c], and #1[OK,#].

6. A term can have a sort prefix. So the term
Type Unif(Type #t1, Type Float)

is the same as Unif(#t1,Float), provided Unif was declared with the raw production |Unif(Type,Type).
7. A term can include embedded parsed terms. However, thesemust in general have a sort prefix, except when they
are arguments to defined constructors.

8. A rewrite rule is a pair of terms separated by→ (arrow, U+2192), with a few additional constraints on the rule
p → t :
• pmust be a pattern, whichmeans it must be a construction term that has been declared as a scheme
(syntactic or raw) andwith the restriction that all contained arguments tometa-applicationsmust be
distinct bound variables.

• t must be a contraction, whichmeans that all meta-applications in t must havemeta-variables that also
occur in pwith the same number of meta-arguments.

Rule declarationsmust either occur with the appropriate current sort or have a pattern with a sort prefix.
9. One rule per scheme can be prefixedwith the qualifier default. If so, the pattern cannot have any structure: all
subterms of the pattern scheme constructionmust be plain meta-applications. Such a default rule is applied after
it has been ensured that all other rules fail for the scheme.

10. Finally, a rule can be prefixedwith the word rule for clarity.
Rules are used for rewriting, a definition of which is beyond the scope of this document; please refer to the literature on
higher order rewriting for details [10, 13].
A.6MANUAL (attributes and synthesis rules).
1. Attributes are declared by attribute declarations followed by an attribute form of one of the following shapes:

(a) ↑name(ValueSort) defines that the synthesized attribute name has ValueSort values;

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 42

(b) ↑name{KeySort} defines that the synthesized attribute name is a set of KeySort values;
(c) ↑name{KeySort:ValueSort} defines that the synthesized attribute name is a map fromKeySort to ValueSort
values;

(d) ↓name(ValueSort), ↓name{KeySort}, and ↓name{KeySort:ValueSort} similarly for inherited attributes;
2. One can add a simple synthesized attribute after a raw data term as ↑id(value), where the id is an attribute name
and the value can be any term of the appropriate sort.

3. Simple inherited attributes are added similarly after a raw scheme term as ↓id(value).
4. An inherited symbol table attribute extension is added to a raw scheme term as ↓id{symbol:value}, where the symbol
is either a variable or a constant (of the appropriate sort).

5. A synthesized attribute reference has the simple form ↑id; and declares that the current sort synthesizes id
attributes.

6. A scheme declaration can include inherited attribute references of the form ↓id, which declares that the scheme
inherits the id attributes.

7. A synthesis rule is a special rule of the form t ↑ name(t ′), where the term t may contain subtermswith attribute
constraints. The rule specifies how terms of the current sort and shape t synthesize id attributes.

8. In rules, one can use the special forms ↑#m, which captures all synthesized attribute values; ↑t{:#ms} (↓t{:#ms}),
which captures the full set of keys or key-valuemappings of the t synthesized (inherited) attribute.

Inherited attributes aremanagedwith regular rules (for schemes) with inherited attribute constraints and extensions.
A.7MANUAL (building and running). To translate a HACS script to an executable, run the hacs command, which
generates a number of files under a build subdirectory, as well as themain script with a .run extension. The script
accepts a number of options:
1. --sort=Sort sets the expected sort (and thus parser productions) for the input to Sort. The input is read,
normalized, and printed.

2. --scheme=Constructor sets the computation for the compiler to Constructor, whichmust be a unary raw scheme;
the argument sort of Constructor defines the parser productions to use. The input is read, wrapped in the action,
normalized, and printed.

3. --term=text uses the text as the input.
4. --input=file (or just the file) reads the input from file.
5. --output=file sends the input to file (the default is the standard output).
6. --errors (or -e) reports details of errors found by subprocesses.
7. --keep (or -k) does not remove temporary generated files.
8. --interpret uses themuch slower interpreted version of HACS and activates the following options.
9. --verbose=n sets the verbosity of the underlying CRSX rewrite engine to n. The default is 0 (quiet) but 1–3 are
useful (above 3 you get a lot of low-level diagnostic output).

10. --parse-verbose activates (very!) verbose output from JavaCC of the parsing.
Youmust provide one of --sort or --scheme, and one of --term and --input.
Notice that the .run script has absolute references to the files in the build directory, so the latter should bemoved

with care.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 43

B. COMMONERRORS
This appendix lists some of themore common of what can be called the “error messages” of HACS. Note that most of
these only occur whenHACS is runwith the --error option.
B.1 ERROR (HACS syntax).

Exception in thread "main" java.lang.RuntimeException: net.sf.crsx.CRSException:
Encountered " "." ". "" at line 35, column 6.

Was expecting one of:
<MT_Repeat> ...
"%Repeat" ...
<MT_Attributes> ...

This error message from the hacs command indicates a simple syntax errors in the .hx file.
B.2 ERROR (user syntax).

Exception in thread "main" java.lang.RuntimeException:
net.sf.crsx.CRSException: net.sf.crsx.parser.ParseException:

mycompiler.crs: Parse error in embedded myDecSome term at line 867, column 42:
J $TA_Let2b 〈Dec (#d)〉{ 〈DecSome (#ds)〉} K at line 867, column 42
Encountered " "\u27e9" "\u27e8Dec (#d)\u27e9 "" at line 867, column 53
. . .

This indicates a concrete syntax error in some parsed syntax—inside J. . . K—in the .hx file. The offending fragment is
given in double angles in themessage. Check that it is correctly entered in the HACS specification in a way that
corresponds to a syntax production. Note that the line/column numbers refer to the generated build/. . .Rules.crs file,
which is not immediately helpful (this is a known bug). In error messages a sort is typically referenced as a lowercase
prefix followed by the sort name—heremyDecSome indicates that the problem is with parsing the DecSome sort of the
My parser.
B.3 ERROR (precedence error).

Java Compiler Compiler Version 6.0_1 (Parser Generator)
(type "javacc" with no arguments for help)
Reading from file OrParser.jj . . .
Error: Line 170, Column 1: Left recursion detected: "N_Exp1... --> N_Exp2... --> N_Exp1..."
Detected 1 errors and 0 warnings.

This suggests that a production breaks the precedence rule that all subterm precedencemarkers must be at least as
high as the entire production’s precedencemarker, in this case between the Exp@1 and Exp@2 prededencemarkers, so
presumably one of the rules for Expwith@2 allows an Expwith@1 as a first subterm.
B.4 ERROR (JavaCC noise).

Java Compiler Compiler Version ??.??_?? (Parser Generator)
(type "javacc" with no arguments for help)
Reading from file FirstHx.jj . . .
Warning: Choice conflict involving two expansions at

line 3030, column 34 and line 3033, column 8 respectively.
A common prefix is: "{" <T_HX_VAR>
Consider using a lookahead of 3 or more for earlier expansion.

Warning: Line 4680, Column 18: Non-ASCII characters used in regular expression.
Please make sure you use the correct Reader when you create the parser,
one that can handle your character set.

File "TokenMgrError.java" does not exist. Will create one.
File "ParseException.java" does not exist. Will create one.
File "Token.java" does not exist. Will create one.
File "SimpleCharStream.java" does not exist. Will create one.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 44

Parser generated with 0 errors and 1 warnings.
Note: net/sf/crsx/samples/gentle/FirstParser.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.

These are “normal” messages from JavaCC. Yes, the choice conflict is annoying but is in fact safe.
B.5 ERROR (missing library).

gcc -std=c99 -g -c -o crsx_scan.o crsx_scan.c
crsx.c:11:30: fatal error: unicode/umachine.h: No such file or directory

TheHACS tools only use one library in C: ICU. You should get the libicu-dev package (or similar) for your system.
B.6 ERROR (meta-variable mistake).

Error in rule Tiger-Ty99_9148-1: contractum uses undefined meta-variable (#es)
Errors prevent normalization.
make: *** [pr3.crs-installed] Error 1

A rule uses themeta-variable #es in the replacement without defining it in the corresponding pattern.
B.7 ERROR.

/home/krisrose/Desktop/teaching/.../hacs/cookmain PG pr3.hxt > pr3.pg
cookmain: crsx.c:528: bufferEnd: Assertion

‘(((childTerm)->descriptor == ((void *)0)) ? 0 :
(childTerm)->descriptor->arity) == bufferTop(buffer)->index’ failed.

/bin/sh: line 1: 14278 Aborted
(core dumped) /home/krisrose/Desktop/teaching/.../hacs/cookmain PG pr3.hxt > pr3.pg

This indicates an arity error: a raw term in the .hx file does not have the right number of arguments.
B.8 ERROR.

// $Sortify
// $[Load, ".../build/edu/nyu/csci/cc/fall14/Pr2Solution.hx", "pr2solutionMeta_HxModule"]
Exception in thread "main" edu.nyu.csci.cc.fall14.TokenMgrError:

Lexical error at line 184, column 31. Encountered: "t" (116), after : "Call"

This indicates an undefined symbol of sort error in the .hx file: the symbol starting with Callt is either undefined or used
in a location where it does not match the required sort.
B.9 ERROR.

// $Sortify
// $[Load, ".../build/edu/nyu/csci/cc/fall14/Pr2Solution.hx", "pr2solutionMeta_HxModule"]
Exception in thread "main" java.lang.RuntimeException: net.sf.crsx.CRSException:

Encountered " ")" ") "" at line 255, column 112.
Was expecting one of:

"," ...

This indicates an incorrect number of arguments in the .hx file: here insufficient arguments (encountering a parenthesis
instead of comma); a similar but opposite error is given when excess arguments are present.
B.10 ERROR.

/home/krisrose/Desktop/teaching/.../hacs/cookmain PG pr3.hxt > pr3.pg
cookmain: crsx.c:528: bufferEnd: Assertion

‘(((childTerm)->descriptor == ((void *)0)) ? 0 :
(childTerm)->descriptor->arity) == bufferTop(buffer)->index’ failed.

/bin/sh: line 1: 14278 Aborted
(core dumped) /home/krisrose/Desktop/teaching/.../hacs/cookmain PG pr3.hxt > pr3.pg

This indicates an arity error: a raw term in the .hx file does not have the right number of arguments.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 45

B.11 ERROR.
« $Print-Check[
...
»

This .run script error indicates a request for a --schemeCheck, which is not in fact declared as a scheme in the .hx file.

C. LIMITATIONS
• Atmost one nested choice is permitted per token declaration.
• It is not possible to use binders and left recursion in the same production with the same precedence.
• Only immediate left recursion is currently supported, i.e., left recursion should bewithin a single production.
Specifically,

sort A | J 〈A〉 stuff K | J other−stuff K ;
and

sort A | J 〈A@1〉 stuff K@1| J other−stuff K@2;
are allowed, but

sort A | J 〈B〉 a−stuff K | J other−a−stuff K ;
sort B | J 〈A〉 b−stuff K | J other−b−stuff K ;

and
sort A | J 〈A@1〉 stuff K@2| J other K ;

are not: prohibited cases involve indirect recursion (the latter case, where the inner left recursive precedence
@1 is less than the outer precedence@2).

• Productions can share a prefix but only within productions for the same sort, and the prefixmust be precisely
identical unit for unit, i.e.,

sort S | J 〈A〉 then 〈B〉 then C K
| J 〈A〉 then 〈B〉 or else D K ;

is fine, but
sort S | J 〈A〉 then 〈B〉 then C K

| J 〈A〉 〈ThenB〉 or else D K ;
sort ThenB | J then 〈B〉 K ;

is not.
• It is not possible to left-factor a binder (making it impossible for multiple binding constructs to have the same
binder prefix).

• Variables embedded in errorJ. . . K instructionsmust start with a lowercase letter.
• When using the symbol qualifier on a reference to a token, then the tokenmust be defined such that it allows
ending with a sequence of _n for n any natural number.

• Symbols inside of J. . . K and raw variables outside the JKmust still have different names or they will be identified.
• Special terms like errorJ. . . K cannot be used as raw subterms.
• Synthesized attribute patterns with pattern-matching in the attributes may not always work.
• The Computed sort only works if there is at least one data or scheme constructor that returns a value of
Computed sort.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 46

REFERENCES
[1] Peter Aczel. A general Church-Rosser theorem.

http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf, July 1978.
Corrections at http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf.

[2] Alfred V. Aho,Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and Tools. Pearson
Education, Inc, second edition, 2006. URL: http://dragonbook.stanford.edu/.

[3] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984.
[4] Frédéric Blanqui, Jean-Pierre Jouannaud, andMitsuhiro Okada. Inductive-data-type systems. Theor. Computer

Science, 272(1-2):41–68, 2002. Corrected version in http://arxiv.org/abs/cs/0610063.
doi:10.1016/S0304-3975(00)00347-9.

[5] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton, N. J., 1941.
[6] Olivier Danvy and Kristoffer H. Rose. Higher-order rewriting and partial evaluation. In Tobias Nipkow, editor, RTA

’98—Rewriting Techniques and Applications, volume 1379 of Lecture Notes in Computer Science, pages 124–140,
Tsukuba, Japan,March 1998. Springer. Extended version available as the technical report BRICS-RS-97-46
(http://www.brics.dk/RS/97/46/). doi:10.1007/BFb0052377.

[7] JohnDowns. hacsel Emacsmode for HACS. Github, February 2015. URL: https://github.com/jdowns/hacsel.
[8] IBMWebSphere DataPower appliances firmware V6.0 announcement. IBMUnited States Software

Announcement 213-172, April 2013. URL:
http://www-01.ibm.com/common/ssi/rep_ca/2/897/ENUS213-172/index.html.

[9] ICU ProjectManagement Committee. ICU – International Components for Unicode, 54 edition, October 2014. URL:
http://site.icu-project.org/home.

[10] Jean-Pierre Jouannaud. Higher-order rewriting: Framework, confluence and termination. In Processes, Terms and
Cycles: Steps on the road to infinity—Essays Dedicated to JanWillem Klop on the occasion of his 60th Birthday, volume
3838 of Lecture Notes in Computer Science, pages 224–250. Springer Verlag, 2005. URL:
http://www.lix.polytechnique.fr/~jouannaud/articles/hor-fct.pdf.

[11] JanWillemKlop. Combinatory Reduction Systems. PhD thesis, University of Utrecht, 1980. Also available as
Mathematical Centre Tracts 127.

[12] JanWillemKlop. Term rewriting systems. In S. Abramsky, D.M. Gabbay, and T. S. E.Maibaum, editors,Handbook of
Logic in Computer Science, volume 2, chapter 1, pages 1–116. Oxford University Press, 1992.

[13] JanWillemKlop, Vincent vanOostrom, and Femke van Raamsdonk. Combinatory reduction systems:
Introduction and survey. Theor. Computer Science, 121:279–308, 1993. doi:10.1016/0304-3975(93)90091-7.

[14] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127–145, 1968.
doi:10.1007/BF01692511.

[15] Cynthia L. M. Kop. Higher Order Termination. PhD thesis, Institute for Programming Research and Algorithmics,
Vrije Universiteit Amsterdam, 2012. IPADissertation Series 2012-14. URL:
http://hdl.handle.net/1871/39346.

[16] SimonMarlow and Simon Peyton-Jones. The GlasgowHaskell Compiler. In Structure, Scale, and a FewMore
Fearless Hacks, volume II of The Architecture of Open Source Applications, chapter 5. Lulu.com,May 2012. URL:
http://www.aosabook.org/en/ghc.html.

[17] GregMorrisett, DavidWalker, Karl Crary, and Neal Glew. From system f to typed assembly language. In
Twenty-Fifth ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 85–97, San Diego,
CA, USA 1998.

[18] P. Naur et al. Report on the algorithmic language ALGOL 60. Communications of the ACM, 3:299–314, 1960.
doi:10.1145/367236.367262.

[19] Tyler Palsulich. Sublime text mode for HACS. GitHub, December 2014. URL:
https://github.com/tpalsulich/hacs_sublime_text_theme.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 47

http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://dragonbook.stanford.edu/
http://arxiv.org/abs/cs/0610063
http://dx.doi.org/10.1016/S0304-3975(00)00347-9
http://www.brics.dk/RS/97/46/
http://dx.doi.org/10.1007/BFb0052377
https://github.com/jdowns/hacsel
http://www-01.ibm.com/common/ssi/rep_ca/2/897/ENUS213-172/index.html
http://site.icu-project.org/home
http://www.lix.polytechnique.fr/~jouannaud/articles/hor-fct.pdf
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1007/BF01692511
http://hdl.handle.net/1871/39346
http://www.aosabook.org/en/ghc.html
http://dx.doi.org/10.1145/367236.367262
https://github.com/tpalsulich/hacs_sublime_text_theme

[20] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, pages 199–208, NewYork, NY, USA, 1988. ACM.
doi:10.1145/53990.54010.

[21] Eva Rose and Kristoffer H. Rose. Compiler construction. The graduate school computer science Compiler
Construction class (CSCI-GA.2130) at the Courant Institute for theMathematical Sciences, New York University,
2016. URL: http://cs.nyu.edu/courses/pring16/CSCI-GA.2130-001/.

[22] Kristoffer Rose. Combinatory reduction systemswith extensions. GitHub, 2014. URL:
https://github.com/crsx.

[23] Kristoffer H. Rose. Operational ReductionModels for Functional Programming Languages. PhD thesis, DIKU,
University of Copenhagen, Universitetsparken 1, DK-2100 KøbenhavnØ, February 1996.
http://krisrose.net/thesis.pdf.

[24] Kristoffer H. Rose. CRSX – an open source platform for experimenting with higher order rewriting. Presented at
HOR 2007, June 2007. URL: http://www.irit.fr/~Ralph.Matthes/HOR/ProceedingsHOR2007.pdf.

[25] Kristoffer H. Rose. CRSX – combinatory reduction systemswith extensions. InManfred Schmidt-Schauß, editor,
RTA ’11—22nd International Conference on Rewriting Techniques and Applications, volume 10 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 81–90, Novi Sad, Serbia, June 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.RTA.2011.81.

[26] Kristoffer H. Rose. Higher-order rewriting for executable compiler specifications. In Eduardo Bonelli, editor,HOR
’10—Proceedings of the 5th InternationalWorkshop on Higher-Order Rewriting, Edinburgh, Scotland, July 14, 2010,
volume 49 of Electronic Proceedings in Theoretical Computer Science, pages 31–45. Open Publishing Association,
2011. doi:10.4204/EPTCS.49.3.

[27] Sreeni Viswanadha, Sriram Sankar, et al. Java Compiler Compiler (JavaCC) - The Java Parser Generator. Sun, 4.0
edition, January 2006. URL: https://javacc.java.net/.

Copyright © 2016 TWOSIGMA INVESTMENTS, LP. Please see front of this report for important disclaimer and disclosure information. TSTR-2016-1 | 48

http://dx.doi.org/10.1145/53990.54010
http://cs.nyu.edu/courses/pring16/CSCI-GA.2130-001/
https://github.com/crsx
http://krisrose.net/thesis.pdf
http://www.irit.fr/~Ralph.Matthes/HOR/ProceedingsHOR2007.pdf
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.81
http://dx.doi.org/10.4204/EPTCS.49.3
https://javacc.java.net/

	Introduction
	Getting Started
	Lexical Analysis
	Syntax Analysis
	Abstract Syntax and Recursive Translation Schemes
	Semantic Data, Operators, and Evaluation
	Synthesizing Information
	Full Syntax-Directed Definitions with Environments
	Higher Order Abstract Syntax
	Compile-time Computations
	Examples
	Manual
	Common Errors
	Limitations

