
Graph Oracle Models, Lower Bounds, and Gaps for
Parallel Stochastic Optimization

Blake Woodworth
Toyota Technological
Institute at Chicago
blake@ttic.edu

Jialei Wang
Two Sigma Investments

jialei.wang@twosigma.com

Adam Smith
Boston University
ads22@bu.edu

Brendan McMahan
Google

mcmahan@google.com

Nathan Srebro
Toyota Technological
Institute at Chicago
nati@ttic.edu

Abstract

We suggest a general oracle-based framework that captures different parallel
stochastic optimization settings described by a dependency graph, and derive
generic lower bounds in terms of this graph. We then use the framework and derive
lower bounds for several specific parallel optimization settings, including delayed
updates and parallel processing with intermittent communication. We highlight
gaps between lower and upper bounds on the oracle complexity, and cases where
the “natural” algorithms are not known to be optimal.

1 Introduction

Recently, there has been great interest in stochastic optimization and learning algorithms that leverage
parallelism, including e.g. delayed updates arising from pipelining and asynchronous concurrent
processing, synchronous single-instruction-multiple-data parallelism, and parallelism across distant
devices. With the abundance of parallelization settings and associated algorithms, it is important to
precisely formulate the problem, which allows us to ask questions such as “is there a better method
for this problem than what we have?” and “what is the best we could possibly expect?”

Oracle models have long been a useful framework for formalizing stochastic optimization and
learning problems. In an oracle model, we place limits on the algorithm’s access to the optimization
objective, but not what it may do with the information it receives. This allows us to obtain sharp
lower bounds, which can be used to argue that an algorithm is optimal and to identify gaps between
current algorithms and what might be possible. Finding such gaps can be very useful—for example,
the gap between the first order optimization lower bound of Nemirovski et al. [20] and the best known
algorithms at the time inspired Nesterov’s accelerated gradient descent algorithm [21].

We propose an oracle framework for formalizing different parallel optimization problems. We specify
the structure of parallel computation using an “oracle graph” which indicates how an algorithm
accesses the oracle. Each node in the graph corresponds to a single stochastic oracle query, and that
query (e.g. the point at which a gradient is calculated) must be computed using only oracle accesses
in ancestors of the node. We generally think of each stochastic oracle access as being based on a
single data sample, thus involving one or maybe a small number of vector operations.

In Section 3 we devise generic lower bounds for parallel optimization problems in terms of simple
properties of the associated oracle graph, namely the length of the longest dependency chain and
the total number of nodes. In Section 4 we study specific parallel optimization settings in which

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

many algorithms have been proposed, formulate them as graph-based oracle parallel optimization
problems, instantiate our lower bounds, and compare them with the performance guarantees of
specific algorithms. We highlight gaps between the lower bound and the best known upper bound and
also situations where we can devise an optimal algorithm that matches the lower bound, but where
this is not the “natural” and typical algorithm used in this settings. The latter indicates either a gap in
our understanding of the “natural” algorithm or a need to depart from it.

Previously suggested models Previous work studied communication lower bounds for parallel
convex optimization where there are M machines each containing a local function (e.g. a collection
of samples from a distribution). Each machine can perform computation on its own function, and
then periodically every machine is allowed to transmit information to the others. In order to prove
meaningful lower bounds based on the number of rounds of communication, it is necessary to prevent
the machines from simply transmitting their local function to a central machine, or else any objective
could be optimized in one round. There are two established ways of doing this. First, one can allow
arbitrary computation on the local machines, but restrict the number of bits that can be transmitted
in each round. There is work focusing on specific statistical estimation problems that establishes
communication lower bounds via information-theoretic arguments [7, 11, 28]. Alternatively, one can
allow the machines to communicate real-valued vectors, but restrict the types of computation they
are allowed to perform. For instance, Arjevani and Shamir [3] present communication complexity
lower bounds for algorithms which can only compute vectors that lie in a certain subspace, which
includes e.g. linear combinations of gradients of their local function. Lee et al. [15] assume a similar
restriction, but allow the data defining the local functions to be allocated to the different machines in
a strategic manner. Our framework applies to general stochastic optimization problems and does not
impose any restrictions on what computation the algorithm may perform, and is thus a more direct
generalization of the oracle model of optimization.

2 The graph-based oracle model
We consider the following stochastic optimization problem

min
x∈Rm:‖x‖≤B

F (x) := Ez∼P [f(x; z)] (1)

The problem (1) captures many important tasks, such as supervised learning, in which case f(x; z) is
the loss of a model parametrized by x on data instance z and the goal is to minimize the population
risk E [f(x; z)]. We assume that f(·; z) is convex, L-Lipschitz, and H-smooth for all z. We also
allow f to be non-smooth, which corresponds to H = ∞. A function g is L-Lipschitz when
‖g(x)− g(y)‖ ≤ L ‖x− y‖ for all x, y, and it is H-smooth when it is differentiable and its gradient
is H-Lipschitz. We consider optimization algorithms that use either a stochastic gradient or stochastic
prox oracle (Ograd and Oprox respectively):

Ograd(x, z) = (f(x; z), ∇f(x; z)) (2)

Oprox(x, β, z) =
(
f(x; z), ∇f(x; z), proxf(·;z)(x, β)

)
(3)

where proxf(·;z)(x, β) = arg min
y

f(y; z) +
β

2
‖y − x‖2 (4)

The prox oracle is quite powerful and provides global rather than local information about f . In
particular, querying the prox oracle with β = 0 fully optimizes f(·; z).

As stated, z is an argument to the oracle, however there are two distinct cases. In the “fully stochastic”
oracle setting, the algorithm receives an oracle answer corresponding to a random z ∼ P . We also
consider a setting in which the algorithm is allowed to “actively query” the oracle. In this case, the
algorithm may either sample z ∼ P or choose a desired z and receive an oracle answer for that z.
Our lower bounds hold for either type of oracle. Most optimization algorithms only use the fully
stochastic oracle, but some require more powerful active queries.

We capture the structure of a parallel optimization algorithm with a directed, acyclic oracle graph G.
Its depth, D, is the length of the longest directed path, and the size, N , is the number of nodes. Each
node in the graph represents a single stochastic oracle access, and the edges in the graph indicate
where the results of that oracle access may be used: only the oracle accesses from ancestors of
each node are available when issuing a new query. These limitations might arise e.g. due to parallel
computation delays or the expense of communicating between disparate machines.

2

Let Q be the set of possible oracle queries, with the exact form of queries (e.g., q = x vs. q =
(x, β, z)) depending on the context. Formally, a randomized optimization algorithm that accesses the
stochastic oracle O as prescribed by the graph G is specified by associating with each node vt a query
rule Rt : (Q,O(Q))∗ × Ξ→ Q, plus a single output rule X̂ : (Q,O(Q))∗ × Ξ→ X . We grant all
of the nodes access to a source of shared randomness ξ ∈ Ξ (e.g. an infinite stream of random bits).
The mapping Rt selects a query qt to make at node vt using the set of queries and oracle responses in
ancestors of vt, namely

qt = Rt
(

(qi,O(qi) : i ∈ Ancestors(vt)) , ξ
)

(5)

Similarly, the output rule X̂ maps from all of the queries and oracle responses to the algorithm’s
output as x̂ = X̂ ((qi,O(qi) : i ∈ [N]), ξ). The essential question is: for a class of optimization
problems (G,O,F) specified by a dependency graph G, a stochastic oracle O, and a function class
F , what is the best possible guarantee on the expected suboptimality of an algorithm’s output, i.e.

inf
(R1,...,RN ,X̂)

sup
f∈F

Ex̂,z [f(x̂; z)]−min
x

Ez [f(x; z)] (6)

In this paper, we consider optimization problems (G,O,FL,H,B) whereFL,H,B is the class of convex,
L-Lipschitz, and H-smooth functions on the domain {x ∈ Rm : ‖x‖ ≤ B} and parametrized by z,
andO is either a stochastic gradient oracleOgrad (2) or a stochastic prox oracleOprox (3). We consider
this function class to contain Lipschitz but non-smooth functions too, which corresponds to H =∞.
Our function class does not bound the dimension m of the problem, as we seek to understand the
best possible guarantees in terms of Lipschitz and smoothness constants that hold in any dimension.
Indeed, there are (typically impractical) algorithms such as center-of-mass methods, which might
use the dimension in order to significantly reduce the oracle complexity, but at a potentially huge
computational cost. Nemirovski [19] studied non-smooth optimization in the case that the dimension
is bounded, proving lower bounds in this setting that scale with the 1/3-power of the dimension but
have only logarithmic dependence on the suboptimality. We do not analyze strongly convex functions,
but the situation is similar and lower bounds can be established via reduction [27].

3 Lower bounds
We now provide lower bounds for optimization problems (G,Ograd,FL,H,B) and (G,Oprox,FL,H,B)
in terms of L, H , B, and the depth and size of G.
Theorem 1. Let L,B ∈ (0,∞), H ∈ [0,∞], N ≥ D ≥ 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Ograd,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

(
max

{
N2, D3N

}
log (DN)

)
such that

E z∼P
X̂∼A

[
f(X̂; z)

]
−min

x
Ez∼P [f(x; z)] ≥ Ω

(
min

{
LB√
D
,
HB2

D2

}
+
LB√
N

)
Theorem 2. Let L,B ∈ (0,∞), H ∈ [0,∞], N ≥ D ≥ 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Oprox,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

(
max

{
N2, D3N

}
log (DN)

)
such that

E z∼P
X̂∼A

[
f(X̂; z)

]
−min

x
Ez∼P [f(x; z)] ≥ Ω

(
min

{
LB

D
,
HB2

D2

}
+
LB√
N

)
These are the tightest possible lower bounds in terms of just the depth and size of G in the sense that
for all D,N there are graphs G and associated algorithms which match the lower bound. Of course,
for specific, mostly degenerate graphs they might not be tight. For instance, our lower bound for the
graph consisting of a short sequential chain plus a very large number of disconnected nodes might
be quite loose due to the artificial inflation of N . Nevertheless, for many interesting graphs they are
tight, as we shall see in Section 4.

Each lower bound has two components: an “optimization” term and a “statistical” term. The statistical
term Ω(LB/

√
N) is well known, although we include a brief proof of this portion of the bound

3

in Appendix D for completeness. The optimization term depends on the depth D, and indicates,
intuitively, the best suboptimality guarantee that can be achieved by an algorithm using unlimited
parallelism but only D rounds of communication. Arjevani and Shamir [3] also obtain lower bounds
in terms of rounds of communication, which are similar to how our lower bounds depend on depth.
However they restricted the type of computations that are allowed to the algorithm to a specific class
of operations, while we only limit the number of oracle queries and the dependency structure between
them, but allow forming the queries in any arbitrary way.

Similar to Arjevani and Shamir [3], to establish the optimization term in the lower bounds, we
construct functions that require multiple rounds of sequential oracle accesses to optimize. In the
gradient oracle case, we use a single, deterministic function which resembles a standard construction
for first order optimization lower bounds. For the prox case, we construct two functions inspired by
previous lower bounds for round-based and finite sum optimization [3, 27]. In order to account for
randomized algorithms that might leave the span of gradients or proxs returned by the oracle, we use
a technique that was proposed by Woodworth and Srebro [26, 27] and refined by Carmon et al. [8].
For our specific setting, we require a slight modification of the previous analysis, which is detailed in
Appendix A.

A useful feature of our lower bounds is that they apply when both the Lipschitz constant and
smoothness are bounded concurrently. Consequently, “non-smooth” in the subsequent discussion can
be read as simply identifying the case where the L term achieves the minimum as opposed to the H
term (even if H <∞). This is particularly important when studying stochastic parallel optimization,
since obtaining non-trivial guarantees in a purely stochastic setting requires some sort of control on
the magnitude of the gradients (smoothness by itself is not sufficient), while obtaining parallelization
speedups often requires smoothness, and so we would like to ask what is the best that can be done
when both Lipschitz and smoothness are controlled. Interestingly, the dependence on both L and H
in our bounds is tight, even when the other is constrained, which shows that the optimization term
cannot be substantially reduced by using both conditions together.

In the case of the gradient oracle, we “smooth out” a standard non-smooth lower bound construction
[20, 26]; previous work has used a similar approach in slightly different settings [2, 12]. For ` ≤ L
and η ≤ H , and orthonormal v1, . . . , vD+1 drawn uniformly at random, we define the `-Lipschitz
but non-smooth function f̃ , and its `-Lipschitz, η-smooth “η-Moreau envelope” [5]:

f̃(x) = max
1≤r≤D+1

`

(
v>r x−

r − 1

2(D + 1)1.5

)
f(x) = min

y
f̃(y) +

η

2
‖y − x‖2 (7)

This defines a distribution over f ’s based on the randomness in the draw of v1, . . . , vD+1, and we
apply Yao’s minimax principle. In Appendix B, we prove Theorem 1 using this construction.

In the case of the prox oracle, we “straighten out” the smooth construction of Woodworth and Srebro
[27]. For fixed constants c, γ, we define the following Lipschitz and smooth scalar function φc:

φc(z) =


0 |z| ≤ c
2(|z| − c)2 c < |z| ≤ 2c

z2 − 2c2 2c < |z| ≤ γ
2γ |z| − γ2 − 2c2 |z| > γ

(8)

For P = Uniform {1, 2} and orthonormal v1, . . . , v2D drawn uniformly at random, we define

f(x; 1) =
η

8

(
−2av>1 x+ φc

(
v>2Dx

)
+

2D−1∑
r=3,5,7,...

φc
(
v>r−1x− v>r x

))
(9)

f(x; 2) =
η

8

(
2D∑

r=2,4,6,...

φc
(
v>r−1x− v>r x

))
(10)

Again, this defines a distribution over f ’s based on the randomness in the draw of v1, . . . , v2D and
we apply Yao’s minimax principle. In Appendix C, we prove Theorem 2 using this construction.

4

Graph example With gradient oracle With gradient and prox oracle
path(T)

(Section 4.1)
L√
T

layer(T,M)
(Section 4.2)

(
L√
T
∧ H
T 2

)
+ L√

MT

(
L
T ∧

H
T 2

)
+ L√

MT

delay(T, τ)
(Section 4.3)

(
L√
T/τ
∧Hτ

2

T 2

)
+ L√

T

(
Lτ
T ∧

Hτ2

T 2

)
+ L√

T

intermittent(T,K,M)
(Section 4.4)

(
L√
KT
∧ H
K2T 2

)
+ L√

MKT

L√
KT
∧
(
H
T 2 + L√

MKT

)
∧
(
H
TK + L√

MKT

)
log
(
MKT
L

)
(
L
KT ∧

H
K2T 2

)
+ L√

MKT
L√
KT
∧
((

L
T ∧

H
T 2

)
+ L√

MKT

)
∧
(
H
TK + L√

MKT

)
log
(
MKT
L

)
Table 1: Summary of upper and lower bounds for stochastic convex optimization of L-Lipschitz and H-smooth
functions with T iterations, M machines, and K sequential steps per machine. Green indicates lower bounds
matched only by "unnatural" methods, red and blue indicates a gap between the lower and upper bounds.

4 Specific dependency graphs

We now use our framework to study four specific parallelization structures. The main results (tight
complexities and gaps between lower and upper bounds) are summarized in Table 1. For simplicity
and without loss of generality, we set B = 1, i.e. we normalize the optimization domain to be
{x ∈ Rm : ‖x‖ ≤ 1}. All stated upper and lower bounds are for the expected suboptimality
E[F (x̂)]− F (x∗) of the algorithm’s output.

4.1 Sequential computation: the path graph

We begin with the simplest model, that of sequential computation captured by the path graph of
length T depicted above. The ancestors of each vertex vi, i = 1 . . . T are all the preceding vertices
(v1, . . . , vi−1). The sequential model is of course well studied and understood. To see how it fits into
our framework: A path graph of length T has a depth of D = T and size of N = T , thus with either
gradient or prox oracles, the statistical term is dominant in Theorems 1 and 2. These lower bounds
are matched by sequential stochastic gradient descent, yielding a tight complexity of Θ(L/

√
T) and

the familiar conclusion that SGD is (worst case) optimal in this setting.

4.2 Simple parallelism: the layer graph

We now turn to a model in which M oracle queries can be made in parallel, and the results are
broadcast for use in making the next batch ofM queries. This corresponds to synchronized parallelism
and fast communication between processors. The model is captured by a layer graph of width M ,
depicted above for M = 3. The graph consists of T layers i = 1, . . . , T each with M nodes
vt,1, . . . , vt,m whose ancestors include vt′,i for all t′ < t and i ∈ [M]. The graph has a depth of
D = T and size of N = MT . With a stochastic gradient oracle, Theorem 1 yields a lower bound of:

Ω

(
min

{
L√
T
,
H

T 2

}
+

L√
MT

)
(11)

which is matched by accelerated mini-batch SGD (A-MB-SGD) [9, 14], establishing the optimality
of A-MB-SGD in this setting. For sufficiently smooth objectives, the same algorithm is also optimal
even if prox access is allowed, since Theorem 2 implies a lower bound of:

Ω

(
min

{
L

T
,
H

T 2

}
+

L√
MT

)
. (12)

That is, for smooth objectives, having access to a prox oracle does not improve the optimal complexity
over just using gradient access. However, for non-smooth or insufficiently smooth objectives, there
is a gap between (11) and (12). An optimal algorithm, smoothed A-MB-SGD, uses the prox oracle
in order to calculate gradients of the Moreau envelope of f(x; z) (cf. Proposition 12.29 of [5]), and
then performs A-MB-SGD on the smoothed objectives. This yields a suboptimality guarantee that
precisely matches (12), establishing that the lower bound from Theorem 2 is tight for the layer graph,

5

and that smoothed A-MB-SGD is optimal. An analysis of the smoothed A-MB-SGD algorithm is
provided in Appendix E.1.

4.3 Delayed updates

We now turn to a delayed computation model that is typical in many asynchronous parallelization
and pipelined computation settings, e.g. when multiple processors or machines are working asyn-
chronously, reading iterates, taking some time to perform the oracle accesses and computation, then
communicating the results back (or updating the iterate accordingly) [1, 6, 16, 18, 24]. This is
captured by a “delay graph” with T nodes v1, . . . , vT and delays τt for the response to the oracle
query performed at vt to become available. Hence, Ancestors(vt) = {vs | s+ τs ≤ t}. Analysis is
typically based on the delays being bounded, i.e. τt ≤ τ for all t. The depiction above corresponds to
τt = 2; the case τt = 1 corresponds to the path graph. With constant delays τt = τ , the delay graph
has depth D ≤ T/τ and size N = T , so Theorem 1 gives the following lower bound when using a
gradient oracle:

Ω

(
min

{
L√
T/τ

,
H

(T/τ)2

}
+

L√
T

)
. (13)

Delayed SGD, with updates xt ← xt−1 − ηt∇f(xt−τt ; z), is a natural algorithm in this setting.
Under the bounded delay assumption the best guarantee we are aware of for delayed update SGD is
(see [10] improving over [1])

O

(
H

T/τ2
+

L√
T

)
. (14)

This result is significantly worse than the lower bound (13) and quite disappointing. It does not
provide for a 1/T 2 accelerated optimization rate, but even worse, compared to non-accelerated SGD
it suffers a slowdown quadratic in the delay, compared to the linear slowdown we would expect. In
particular, the guarantee (14) only allows maximum delay of τ = O(T 1/4) in order to attain the
optimal statistical rate Θ(L/

√
T), whereas the lower bound allows a delay up to τ = O(T 3/4).

This raises the question of whether a different algorithm can match the lower bound (13). The answer
is affirmative, but it requires using an “unnatural” algorithm, which simulates a mini-batch approach
in what seems an unnecessarily wasteful way. We refer to this as a “wait-and-collect” approach: it
works in T/(2τ) stages, each stage consisting of 2τ iterations (i.e. nodes or oracle accesses). In stage
i, τ iterations are used to obtain τ stochastic gradient estimates ∇f(xi; z2τi+j), j = 1, . . . , τ at the
same point xi. For the remaining τ iterations, we wait for all the preceding oracle computations to
become available and do not even use our allowed oracle access. We can then finally update the xi+1

using the minibatch of τ gradient estimates. This approach is also specified formally as Algorithm 2
in Appendix E.2. Using this approach, we can perform T/(2τ) A-MB-SGD updates with a minibatch
size of τ , yielding a suboptimality guarantee that precisely matches the lower bound (13).

Thus (13) indeed represents the tight complexity of the delay graph with a stochastic gradient oracle,
and the wait-and-collect approach is optimal. However, this answer is somewhat disappointing and
leaves an intriguing open question: can a more natural, and seemingly more efficient (no wasted
oracle accesses) delayed update SGD algorithm also match the lower bound? An answer to this
question has two parts: first, does the delayed update SGD truly suffer from a τ2 slowdown as
indicated by (14), or does it achieve linear degradation and a speculative guarantee of

O

(
H

T/τ
+

L√
T

)
. (15)

Second, can delayed update SGD be accelerated to achieve the optimal rate (13). We note that
concurrent with our work there has been progress toward closing this gap: Arjevani et al. [4] showed
an improved bound matching the non-accelerated (15) for delayed updates (with a fixed delay) on
quadratic objectives. It still remains to generalize the result to smooth non-quadratic objectives,
handle non-constant bounded delays, and accelerate the procedure so as to improve the rate to (τ/T)2.

4.4 Intermittent communication

6

We now turn to a parallel computation model which is relevant especially when parallelizing across
disparate machines: in each of T iterations, there are M machines that, instead of just a single oracle
access, performK sequential oracle accesses before broadcasting to all other machines synchronously.
This communication pattern is relevant in the realistic scenario where local computation is plentiful
relative to communication costs (i.e. K is large). This may be the case with fast processors distributed
across different machines, or in the setting of federated learning, where mobile devices collaborate to
train a shared model while keeping their respective training datasets local [17].

This is captured by a graph consisting of M parallel chains of length TK, with cross connections
between the chains every K nodes. Indexing the nodes as vt,m,k, the nodes vt,m,1 → · · · → vt,m,K
form a chain, and vt,m,K is connected to vt+1,m′,1 for all m′ = 1..M . This graph generalizes the
layer graph by allowing K sequential oracle queries between each complete synchronization; K = 1
recovers the layer graph, and the depiction above corresponds to K = M = 3. We refer to the
computation between each synchronization step as a (communication) round.

The depth of this graph is D = TK and the size is N = TKM . Focusing on the stochastic gradient
oracle (the situation is similar for the prox oracle, except with the potential of smoothing a non-smooth
objective, as discussed in Section 4.2), Theorem 1 yields the lower bound:

Ω

(
min

{
L√
TK

,
H

T 2K2

}
+

L√
TKM

)
. (16)

A natural algorithm for this graph is parallel SGD, where we run an SGD chain on each machine and
average iterates during communication rounds, e.g. [17]. The updates are then given by:

xt,m,0 =
1

M

∑
m′

xt,m′,K

xt,m,k = xt,m,k−1 − ηt∇f(xt,m,k−1; zt,m,k), k = 1, . . . ,K

(17)

(note that xt,m,0 does not correspond to any node in the graph, and is included for convenience of
presentation). Unfortunately, we are not aware of any satisfying analysis of such a parallel SGD
approach. Instead, we consider two other algorithms in an attempt to match the lower bound (16).
First, we can combine all KM oracle accesses between communication rounds in order to form a
single mini-batch, giving up on the possibility of sequential computation along the “local” K node
sub-paths. Using all KM nodes to obtain stochastic gradient estimates at the same point, we can
perform T iterations of A-MB-SGD with a mini-batch size of KM , yielding an upper bound of

O

(
H

T 2
+

L√
TKM

)
. (18)

This is a reasonable and common approach, and it is optimal (up to constant factors) when KM =

O(L
2

H2T
3) so that the statistical term is limiting. However, comparing (18) to the lower bound (16)

we see a gap by a factor of K2 in the optimization term, indicating the possibility for significant
gains when K is large (i.e. when we can process a large number of examples on each machine at
each round). Improving the optimization term by this K2 factor would allow statistical optimality as
long as M = O(T 3K3)—-this is a very significant difference. In many scenarios we would expect a
modest number of machines, but the amount of data on each machine could easily be much more than
the number of communication rounds, especially if communication is across a wide area network.

In fact, when K is large, a different approach is preferable: we can ignore all but a single chain and
simply execute KT iterations of sequential SGD, offering an upper bound of

O

(
L√
TK

)
. (19)

Although this approach seems extremely wasteful, it actually yields a better guarantee than (18) when
K ≥ Ω(T 3L2/H). This is a realistic regime, e.g. in federated learning when computation is dis-
tributed across devices, communication is limited and sporadic and so only a relatively small number
of rounds T are possible, but each device already possesses a large amount of data. Furthermore, for
non-smooth functions, (19) matches the lower bound (16).

Our upper bound on the complexity is therefore obtained by selecting either A-MB-SGD or single-
machine sequential SGD, yielding a combined upper bound of

O

(
min

{
L√
TK

,
H

T 2

}
+

L√
TKM

.

)
(20)

7

For smooth functions, there is still a significant gap between this upper bound and the lower bound
(16). Furthermore, this upper bound is not achieved by a single algorithm, but rather a combination
of two separate algorithms, covering two different regimes. This raises the question of whether there
is a single, natural algorithm, perhaps an accelerated variant of the parallel SGD updates (17), that at
the very least matches (20), and preferably also improves over them in the intermediate regime or
even matches the lower bound (16).

Active querying and SVRG All methods discussed so far used fully stochastic oracles, requesting
a gradient (or prox computation) with respect to an independently and randomly drawn z ∼ P . We
now turn to methods that also make active queries, i.e. draw samples from P and then repeatedly
query the oracle, at different points x, but on the same samples z. Recall that all of our lower bounds
are valid also in this setting.

With an active query gradient oracle, we can implement SVRG [13, 15] on an intermittent com-
munication graph. More specifically, for an appropriate choice of n and λ, we apply SVRG to the
regularized empirical objective:

F̂λ(x) =
1

n

n∑
i=1

f(x; zi) +
λ

2
‖x‖2 (21)

Algorithm 1 SVRG

Parameters: n, S, I
Sample z1, . . . , zn ∼ P
Initialize x0 = 0

for s = 1, 2, . . . , S =

⌊
T

d n
KM e+d I

K e

⌋
do

x̃ = xs−1
g̃ = ∇F̂λ(x̃) = 1

n

∑n
i=1∇f(x̃; zi) + λx̃ (∗)

x0s = x̃
for i = 1, 2, . . . , I = H

λ do
Sample j ∼ Uniform {1, . . . , n}
xis = xi−1s − η

((
∇f(xi−1s ; zj) + λxi−1s

)
− (∇f(x̃; zj) + λx̃) + g̃

)
(∗∗)

end for
xs = xis for i ∼ Uniform {1, . . . , I}

end for
Return xS

To do so, we first pick a sample {z1, . . . zn} (without actually querying the oracle). As indicated
by Algorithm 1, we then alternate between computing full gradients on {z1, . . . zn} in parallel (∗),
and sequential variance-reduced stochastic gradient updates in between (∗∗). The full gradient g̃ is
computed using n active queries to the gradient oracle. Since all of these oracle accesses are made
at the same point x̃, this can be fully parallelized across the M parallel chains of length K thus
requiring n/KM rounds. The sequential variance-reduced stochastic gradient updates cannot be
parallelized in this way, and must be performed using queries to the gradient oracle in just one of
the M available parallel chains, requiring I/K rounds of synchronization. Consequently, each outer
iteration of SVRG requires

⌈
n

KM

⌉
+
⌈
I
K

⌉
rounds. We analyze this method using λ = Θ

(
L√
n

)
,

I = Θ
(
H
λ

)
= Θ

(
H
√
n

L

)
, and n = min

{
Θ
(

K2T 2L2

H2 log2(MKT/L)

)
,Θ
(

MKT
log(MKT/L)

)}
. Using the

analysis of Johnson and Zhang [13], SVRG guarantees that, with an appropriate stepsize, we have
F̂λ(xS) − minx F̂λ(x) ≤ 2−S ; the value of xS on the empirical objective also generalizes to the
population, so E [f(xS ; z)] − minx E [f(x; z)] ≤ 2−S + O

(
L√
n

)
(see [22]). With our choice of

parameters, this implies upper bound (see Appendix E.3)

O

((
H

TK
+

L√
TKM

)
log

(
TKM

L

))
. (22)

These guarantees improve over sequential SGD (17) as soon as M > log2(TKM/L) and K >

H2/L2, i.e. L/
√
TK < L2/H . This is a very wide regime: we require only a moderate number

8

of machines, and the second condition will typically hold for a smooth loss. Intuitively, SVRG
does roughly the same number (up to a factor of two) of sequential updates as in the sequential
SGD approach but it uses better, variance reduced updates. The price we pay is in the smaller total
sample size since we keep calling the oracle on the same samples. Nevertheless, since SVRG only
needs to calculate the “batch” gradient a logarithmic number of times, this incurs only an additional
logarithmic factor.

Comparing (18) and (22), we see that SVRG also improves over A-MB-SGD as soon as K >
T log(TKM/L), that is if the number of points we are processing on each machine each round is
slightly more then the total number of rounds, which is also a realistic scenario.

To summarize, the best known upper bound for optimizing with intermittent communication using a
pure stochastic oracle is (20), which combines two different algorithms. However, with active oracle
accesses, SVRG is also possible and the upper bound becomes:

O

(
min

{
L√
TK

,

(
H

TK
+

L√
TKM

)
log

(
TKM

L

)
,
H

T 2
+

L√
TKM

})
(23)

5 Summary

Our main contributions in this paper are: (1) presenting a precise formal oracle framework for
studying parallel stochastic optimization; (2) establishing tight oracle lower bounds in this framework
that can then be easily applied to particular instances of parallel optimization; and (3) using the
framework to study specific settings, obtaining optimality guarantees, understanding where additional
assumptions would be needed to break barriers, and, perhaps most importantly, identifying gaps in
our understanding that highlight possibilities for algorithmic improvement.

Specifically, we highlight the following gaps:

• For non-smooth objectives and a stochastic prox oracle, it is possible to improve performance
in the layer graph setting using smoothing and acceleration. It is not clear whether one can
match the same optimal performance using a more direct algorithm, e.g. one that averages
the answers from the prox oracle.

• In the delay graph setting, delayed update SGD’s guarantee is not optimal. We suggest an
alternative optimal algorithm, but it would be interesting and beneficial to understand the
true behavior of delayed update SGD and to improve it as necessary to attain optimality.

• With intermittent communication, we show how different methods are better in different
regimes, but even combining these methods does not match our lower bound. This sets the
stage for studying the optimal complexity in this setting: is our lower bound achievable? Are
current methods optimal? Is the true optimal complexity somewhere in between? Even just
obtaining a single method that matches the current best performance in all regimes would
be a significant advance here.

• With intermittent communication, active queries allow us to obtain better performance in a
certain regime. Can we match this performance using pure stochastic queries or is there a
real gap between active and pure stochastic queries?

The investigation into optimizing over FL,H,B in our framework indicates that there is no advantage
to the prox oracle for optimizing (sufficiently) smooth functions. This raises the question of what
additional assumptions might allow us to leverage the prox oracle, which is intuitively much stronger
as it allows global access to f(·; z). One option is to assume a bound on the variance of the stochastic
oracle i.e. Ez[‖∇f(x; z)−∇F (x)‖2] ≤ σ2 which captures the notion that the functions f(·; z) are
somehow related and not arbitrarily different. In particular, if each stochastic oracle access, in each
node, is based on a sample of b data points (thus, a prox operation optimizes a sub-problem of size b),
we have that σ2 ≤ L2/b. Initial investigation into the complexity of optimizing over the restricted
class FL,H,B,σ (where we also require the above variance bound), reveals a significant theoretical
advantage for the prox oracle over the gradient oracle, even for smooth functions. This is an example
of how formalizing the optimization problem gives insight into additional assumptions, in this case
low variance, that are necessary for realizing the benefits of a stronger oracle.

9

Acknowledgements

We would like to thank Ohad Shamir for helpful discussions. This work was partially funded by
NSF-BSF award 1718970 (“Convex and Non-Convex Distributed Learning”) and a Google Research
Award. BW is supported by the NSF Graduate Research Fellowship under award 1754881.

References
[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In Advances in

Neural Information Processing Systems, pages 873–881, 2011.

[2] Naman Agarwal and Elad Hazan. Lower bounds for higher-order convex optimization. arXiv
preprint arXiv:1710.10329, 2017.

[3] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning
and optimization. In Advances in Neural Information Processing Systems, pages 1756–1764,
2015.

[4] Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic
gradient descent with delayed updates. 2018.

[5] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator theory
in Hilbert spaces, volume 2011. Springer, 2017.

[6] Dimitri P Bertsekas. Parallel and distributed computation: numerical methods, volume 23.
Prentice hall Englewood Cliffs, NJ, 1989.

[7] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Communica-
tion lower bounds for statistical estimation problems via a distributed data processing inequality.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
1011–1020. ACM, 2016.

[8] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. arXiv preprint arXiv:1710.11606, 2017.

[9] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms
via accelerated gradient methods. In Advances in neural information processing systems, pages
1647–1655, 2011.

[10] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-
batch algorithm for regularized stochastic optimization. IEEE Transactions on Automatic
Control, 61(12):3740–3754, 2016.

[11] Ankit Garg, Tengyu Ma, and Huy Nguyen. On communication cost of distributed statistical
estimation and dimensionality. In Advances in Neural Information Processing Systems, pages
2726–2734, 2014.

[12] Cristóbal Guzmán and Arkadi Nemirovski. On lower complexity bounds for large-scale smooth
convex optimization. Journal of Complexity, 31(1):1–14, 2015.

[13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, 2013.

[14] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

[15] Jason D Lee, Qihang Lin, Tengyu Ma, and Tianbao Yang. Distributed stochastic variance
reduced gradient methods by sampling extra data with replacement. The Journal of Machine
Learning Research, 18(1):4404–4446, 2017.

[16] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous dis-
tributed online learning. In Advances in Neural Information Processing Systems, pages 2915–
2923, 2014.

10

[17] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera
y Arcas. Communication-efficient learning of deep networks from decentralized data. In
Artificial Intelligence and Statistics, 2017.

[18] A Nedić, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremental
subgradient methods. Studies in Computational Mathematics, 8(C):381–407, 2001.

[19] Arkadi Nemirovski. On parallel complexity of nonsmooth convex optimization. Journal of
Complexity, 10(4):451–463, 1994.

[20] Arkadii Nemirovski, David Borisovich Yudin, and Edgar Ronald Dawson. Problem complexity
and method efficiency in optimization. 1983.

[21] Yurii Nesterov. A method of solving a convex programming problem with convergence rate o
(1/k2). 1983.

[22] Shai Shalev-Shwartz and Nathan Srebro. Svm optimization: inverse dependence on training set
size. In International Conference on Machine Learning, pages 928–935, 2008.

[23] Eric V Slud et al. Distribution inequalities for the binomial law. The Annals of Probability, 5
(3):404–412, 1977.

[24] Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed
stochastic optimization. In Artificial Intelligence and Statistics, pages 957–965, 2016.

[25] Jialei Wang, Weiran Wang, and Nathan Srebro. Memory and communication efficient distributed
stochastic optimization with minibatch prox. In Conference on Learning Theory, 2017.

[26] Blake Woodworth and Nathan Srebro. Lower bound for randomized first order convex opti-
mization. arXiv preprint arXiv:1709.03594, 2017.

[27] Blake Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objec-
tives. In Advances in Neural Information Processing Systems, pages 3639–3647, 2016.

[28] Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. Information-theoretic
lower bounds for distributed statistical estimation with communication constraints. In Advances
in Neural Information Processing Systems, pages 2328–2336, 2013.

11

A Main lower bound lemma

This analysis closely follows that of previous work, specifically the proof of Theorem 1 in [26] and
the proof of Lemma 4 in [8]. There are slight differences in the problem setup between this work and
that of previous papers, thus we include the following analysis for completeness and to ensure that all
of our results can be verified. We do not claim any significant technical novelty within this section.

Let V = {v1, . . . , vk} be a uniformly random orthonormal set of vectors in Rm. All of the
probabilities referred to in Appendix A will be over the randomness in the selection of V . Let
X = {x1, x2, . . . , xN} be a set of vectors in Rm where ‖xi‖ ≤ 1 for all i ≤ N . Let these vectors be
organized into disjoint subsets X1 ∪X2 ∪ · · · ∪Xk = X . Furthermore, suppose that for each t ≤ k,
the set Xt is a deterministic function Xt = Xt(X<t, V), so it can also be expressed as Xt = Xt(V).

Let St = X≤t∪V≤t, let Pt be the projection operator onto the span of St and let P⊥t be the projection
onto the orthogonal complement of the span of St. As in [8, 26], define

Gt = Gt(V) =

t

∀x ∈ Xt ∀j ≥ t

∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , vj
〉∣∣∣∣∣ ≤ α

|

(24)

Finally, suppose that for each t, Xt is of the form:

Xt (V) = Xt (V<t1G<t
+ V 1¬G<t

) (25)

i.e. conditioned on the event G<t, it is a deterministic function of V<t only (and not vt, ..., vk). We
say that P [G<1] = 1, so X1 is always independent of V .

First, we connect the events Gt to a more immediately useful condition

Lemma 1. [cf. Lemma 9 [8], Lemma 1 [26]] For any c, k, N , V , and {Xk}kt=1, let α =

min

{
1

4N ,
c

2(1+
√
2N)

}
then for each t ≤ k

G≤t =⇒ G′≤t :=
r
∀r ≤ t, ∀x ∈ Xr, ∀j ≥ t |〈x, vj〉| ≤

c

2

z

The proof of Lemma 1 involves straightforward linear algebra, and we defer it to Appendix A.1. By
Lemma 1, G<t ⊆ G′<t, therefore the property (25) is implied by

Xt (V) = Xt

(
V<t1G′<t

+ V 1¬G′<t

)
(26)

Now, we state the main result which allows us to prove our lower bounds:
Lemma 2. [cf. Lemma 4 [8], Lemma 4 [26]] For any k ≥ 1, N ≥ 1, c ∈ (0, 1), and dimension

m ≥ k +N + max

{
32N2,

8(1 +
√

2N)2

c2

}
log
(
2k2N

)
if the sets X1, . . . , Xk satisfy the property (26) then

P
[
∀t ≤ k ∀x ∈ Xt ∀j ≥ t |〈x, vj〉| ≤

c

2

]
≥ 1

2

The proof of Lemma 2 relies upon the following, whose proof we defer to Appendix A.1.
Lemma 3. [cf. Lemma 11 [8], Lemma 3 [26]] Let R be any rotation operator, R>R = I , that
preserves St−1, that is Rw = R>w = w for any w ∈ Span (St−1). Then the following conditional
densities are equal

p (V≥t | G<t, V<t) = p (RV≥t | G<t, V<t)

Proof of Lemma 2. This closely follows the proof of Lemma 4 [8] and Lemma 4 [26], with small
modifications to account for the different setting.

Set α = min

{
1

4N ,
c

2(1+
√
2N)

}
. Then by Lemma 1, since X1, . . . , Xk satisfy the property (26)

P
[
∀t ≤ k ∀x ∈ Xt ∀j ≥ t |〈x, vj〉| ≤

c

2

]
≥ P [G≤k] =

∏
t≤k

P [Gt | G<t] (27)

12

Focus on a single term in this product,

P [Gt | G<t] = EV<t
[P [Gt | G<t, V<t]] ≥ inf

V<t

P [Gt | G<t, V<t] (28)

For any particular V<t,

P [Gt | G<t, V<t] = P

[
∀x ∈ Xt ∀j ≥ t

∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , vj
〉∣∣∣∣∣ ≤ α

∣∣∣∣∣ G<t, V<t
]

(29)

≥ 1−
∑

x∈Xt(V<t)

k∑
j=t

P

[∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , vj
〉∣∣∣∣∣ > α

∣∣∣∣∣ G<t, V<t
]

(30)

≥ 1−
∑

x∈Xt(V<t)

k∑
j=t

P

[∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , P⊥t−1vj∥∥P⊥t−1vj∥∥
〉∣∣∣∣∣ > α

∣∣∣∣∣ G<t, V<t
]

(31)

Conditioned on G<t and V<t, the set Xt = Xt(V<t) is fixed, as is the set St−1 and therefore P⊥t−1,
so the first term in the inner product is a fixed unit vector. By Lemma 3, the conditional density
of vj | G<t, V<t is spherically symmetric within the span onto which P⊥t−1 projects. Therefore,
P⊥t−1vj

‖P⊥t−1vj‖
is distributed uniformly on the unit sphere in Span (St−1)

⊥, which has dimension at least

m′ := m− (t− 1)−
∑t−1
r=1 |Xr| ≥ m− k + 1−N .

The probability of a fixed vector and a uniform random vector on the unit sphere in Rm′ having inner
product more than α is proportional to the surface area of the “end caps" of the sphere lying above
and below circles of radius

√
1− α2, which is strictly smaller than the surface area of a full sphere of

radius
√

1− α2. Therefore, for a given x, vj

P

[∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , P⊥t−1vj∥∥P⊥t−1vj∥∥
〉∣∣∣∣∣ > α

∣∣∣∣∣ G<t, V<t
]
<

SurfaceAream′(
√

1− α2)

SurfaceAream′(1)
(32)

=
(√

1− α2
)m′−1

(33)

≤ exp

(
− (m′ − 1)α2

2

)
(34)

where we used that 1− x ≤ exp(−x). Finally, this holds for each t, x ∈ Xt, and j ≥ t, so

P [G≤k] ≥
∏
t≤k

inf
V<t

P [Gt | G<t, V<t] (35)

≥
(

1− kN exp

(
− (m− k −N)α2

2

))k
(36)

≥ 1− k2N exp

(
−α

2

2
max

{
32N2,

8(1 +
√

2N)2

c2

}
log

(
1

2k2N

))
(37)

=
1

2
(38)

Where we used that m ≥ k +N + max
{

32N2, 8(1+
√
2N)2

c2

}
log
(
2k2N

)
for (37). For (38), recall

that we chose α = min
{

1
4N ,

c
2(1+

√
2N)

}
so max

{
32N2, 8(1+

√
2N)2

c2

}
= 2

α2 .

A.1 Proof of Lemmas 1 and 3

Lemma 1. [cf. Lemma 9 [8], Lemma 1 [26]] For any c, k, N , V , and {Xk}kt=1, let α =

min

{
1

4N ,
c

2(1+
√
2N)

}
then for each t ≤ k

G≤t =⇒ G′≤t :=
r
∀r ≤ t, ∀x ∈ Xr, ∀j ≥ t |〈x, vj〉| ≤

c

2

z

13

Proof. This closely follows the proof of Lemma 9 [8], with slight modification to account for the
different problem setup.

For t ≤ k assume G≤t. For any x ∈ Xt and j ≥ t

|〈x, vj〉| ≤ ‖x‖
∣∣∣∣〈 x

‖x‖
, Pt−1vj

〉∣∣∣∣+ ‖x‖
∣∣∣∣〈 x

‖x‖
, P⊥t−1vj

〉∣∣∣∣ (39)

≤ ‖Pt−1vj‖+

∣∣∣∣〈P⊥t−1x‖x‖
, vj

〉∣∣∣∣ (40)

≤ ‖Pt−1vj‖+

∣∣∣∣∣
〈

P⊥t−1x∥∥P⊥t−1x∥∥ , vj
〉∣∣∣∣∣ (41)

≤ ‖Pt−1vj‖+ α (42)

First, we decomposed vj into its St−1 and S⊥t−1 components and applied the triangle inequality. Next
we used that ‖x‖ ≤ 1 and that the orthogonal projection operator P⊥t−1 is self-adjoint. Finally, we
used that the projection operator is non-expansive and the definition of Gt.

Next, we prove by induction on t that for all t ≤ k and j ≥ t, the eventG≤t implies that ‖Pt−1vj‖2 ≤
2α2

∑t−1
r=1 |Xr|. As a base case (t = 1), observe that, trivially, ‖Pt−1vj‖2 = ‖0vj‖2 = 0. For the in-

ductive step, fix any t ≤ k and j ≥ t and suppose thatG≤t′ =⇒
∥∥Pt′−1v′j∥∥2 ≤ 2α2

∑t′−1
r=1 |Xr| for

all t′ < t and j′ ≥ t′. Let P̂t project onto Span (St ∪Xt+1) (this includes Xt+1 in contrast with Pt)
and let P̂⊥t project onto the orthogonal subspace. Since Span (X1 ∪X2 ∪ · · · ∪Xt−1 ∪ V≤t−1) =
St−1, {

P⊥r−1x∥∥P⊥r−1x∥∥ : r ≤ t− 1, x ∈ Xr

}
∪

 P̂⊥r−1vr∥∥∥P̂⊥r−1vr∥∥∥ : r ≤ t− 1

 (43)

is a (potentially over-complete) basis for St−1. Using the triangle inequality and G<t, we can
therefore expand

‖Pt−1vj‖2 =

t−1∑
r=1

∑
x∈Xr

〈
P⊥r−1x∥∥P⊥r−1x∥∥ , vj

〉2

+

t−1∑
r=1

〈
P̂⊥r−1vr∥∥∥P̂⊥r−1vr∥∥∥ , vj

〉2

(44)

≤ α2
t−1∑
r=1

|Xr|+
t−1∑
r=1

1∥∥∥P̂⊥r−1vr∥∥∥2
〈
P̂⊥r−1vr, vj

〉2
(45)

We must now bound the second term of (45). Focusing on the inner product in the numerator for one
particular r < t:∣∣∣〈P̂⊥r−1vr, vj〉∣∣∣ =

∣∣∣〈vr, vj〉 − 〈P̂r−1vr, vj〉∣∣∣ (46)

=
∣∣∣〈P̂r−1vr, vj〉∣∣∣ (47)

≤ |〈Pr−1vr, vj〉|+
∑
x∈Xr

∣∣∣∣∣
〈

P⊥r−1x∥∥P⊥r−1x∥∥ , vr
〉〈

P⊥r−1x∥∥P⊥r−1x∥∥ , vj
〉∣∣∣∣∣ (48)

≤ ‖Pr−1vr‖ ‖Pr−1vj‖+ |Xr|α2 (49)

≤ 2α2
r−1∑
i=1

|Xi|+ |Xr|α2 (50)

≤ α

2
(51)

First, we used that P̂⊥r−1 = I − P̂r−1, then that vr ⊥ vj . Next, we applied the definition of P̂r−1 and
the triangle inequality. To get (49) we use the Cauchy-Schwarz inequality on the first term, and the
definition of Gr for the second. Finally, we use the inductive hypothesis and that α ≤ 1

4N .

14

We have now upper bounded the inner products in the second term of (45), and it remains to lower
bound the norm in the denominator. We can rewrite∥∥∥P̂⊥r−1vr∥∥∥2 =

〈
P̂⊥r−1vr, vr

〉
(52)

= 〈vr, vr〉 −
〈
P̂r−1vr, vr

〉
(53)

≥ 1− 〈Pr−1vr, vr〉 −
∑
x∈Xr

〈
P⊥r−1x∥∥P⊥r−1x∥∥ , vr

〉2

(54)

≥ 1− ‖Pr−1vr‖2 − |Xr|α2 (55)

≥ 1− 2α2
r−1∑
i=1

|Xi| − |Xr|α2 (56)

≥ 1

2
(57)

Here we again used P̂⊥r−1 = I − P̂r−1 followed by an (over)expansion of P̂r−1. The remaining steps
follow from the inductive hypothesis and fact that α ≤ 1

4N . Combining (57) with (51) and returning
to (45), we have that

‖Pt−1vj‖2 ≤ α2
t−1∑
r=1

|Xr|+
t−1∑
r=1

1∥∥∥P̂⊥r−1vr∥∥∥2
〈
P̂⊥r−1vr, vj

〉2
(58)

≤ α2
t−1∑
r=1

|Xr|+
t−1∑
r=1

α2 (59)

≤ 2α2
t−1∑
r=1

|Xr| (60)

Therefore, for each t ≤ k and j ≥ t an upper bound ‖Pt−1vj‖2 ≤ 2α2
∑t−1
r=1 |Xr|. Returning now

to (42), we have that for any t ≤ k, x ∈ Xt, and j ≥ t the event G≤t implies

|〈x, vj〉| ≤ ‖Pt−1vj‖+ α (61)

≤ α

1 +

√√√√2

t−1∑
r=1

|Xr|

 (62)

≤ c

2
(63)

where we used that α ≤ c

2(1+
√
2N)

Lemma 3. [cf. Lemma 11 [8], Lemma 3 [26]] Let R be any rotation operator, R>R = I , that
preserves St−1, that is Rw = R>w = w for any w ∈ Span (St−1). Then the following conditional
densities are equal

p (V≥t | G<t, V<t) = p (RV≥t | G<t, V<t)

Proof. This closely follows the proof of Lemma 11 [8].

First, we apply Bayes’ rule to each density and use the fact that RV<t = V<t:

p (V≥t | G<t, V<t) =
P [G<t | V] p(V)

P [G<t | V<t] p(V<t)
(64)

p (RV≥t | G<t, V<t) =
P [G<t | RV] p(RV)

P [G<t | V<t] p(V<t)
(65)

Since V has a spherically symmetric marginal distribution, p(V) = p(RV). Therefore, it only
remains to show that P [G<t | V] = P [G<t | RV]. The eventG<t is determined by V or byRV , thus
both probabilities are either 0 or 1, so it suffices to show P [G<t | V] = 1 ⇐⇒ P [G<t | RV] = 1.

15

Assume first P [G<t | V] = 1. Then for each r < t, x ∈ Xr, and j ≥ r
∣∣∣∣〈 P⊥r−1x

‖P⊥r−1x‖
, vj

〉∣∣∣∣ ≤ α, and

each set Xr is a deterministic function of V<r. Also, observe that for any x ∈ Xr and j ≥ r,∣∣∣∣∣
〈

P⊥r−1x∥∥P⊥r−1x∥∥ , Rvj
〉∣∣∣∣∣ =

∣∣∣∣∣
〈
R>P⊥r−1x∥∥P⊥r−1x∥∥ , vj

〉∣∣∣∣∣ =

∣∣∣∣∣
〈

P⊥r−1x∥∥P⊥r−1x∥∥ , vj
〉∣∣∣∣∣ ≤ α (66)

where we used that P⊥r−1x ∈ Span(Sr) ⊆ Span(St−1) so R>P⊥r−1x = P⊥r−1x. Therefore, it suffices
to show that the sequence X1(RV), ..., Xt(RV) = X1(V), ..., Xt(V) when P [G<t | V] = 1. We
prove this by induction.

For the base case, by definition X1(RV) = X1 = X1(V). For the inductive step, suppose now that
Xr′(RV) = Xr′(V) for each r′ < r. This, plus the fact that P [G<t | V] = 1 =⇒ P [G<r | V] = 1
together imply that P [G<r | RV] = 1. Thus, Xr(RV) = Xr(RV<r) = Xr(V<r). Therefore, we
conclude that P [G<t | V] = 1 =⇒ P [G<t | RV] = 1, the reverse implication can be proven with
a similar argument.

B Proof of Theorem 1

Theorem 1. Let L,B ∈ (0,∞), H ∈ [0,∞], N ≥ D ≥ 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Ograd,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

(
max

{
N2, D3N

}
log (DN)

)
such that

E z∼P
X̂∼A

[
f(X̂; z)

]
−min

x
Ez∼P [f(x; z)] ≥ Ω

(
min

{
LB√
D
,
HB2

D2

}
+
LB√
N

)
Proof. Assume for now that B = 1, the lower bound can be established for other values of B by
scaling inputs to our construction. Let

` = min

{
L,

H

10(D + 1)1.5

}
η = 10(D + 1)1.5` (67)

and consider the following `-Lipschitz function:

f̃(x) = max
1≤r≤D+1

`v>r x−
5`2(r − 1)

η
(68)

where the vectors v1, . . . , vD+1 are an orthonormal set drawn uniformly at random from the unit
sphere in Rm. We use the η-Moreau envelope [5] of this function in order to prove our lower bound:

f(x) = inf
y

{
f̃(y) +

η

2
‖y − x‖2

}
(69)

The random draw of V defines a distribution over functions f . We will lower bound the expected
suboptimality of any deterministic optimization algorithm’s output and apply Yao’s minimax principle
at the end of the proof.

This function has the following properties:

Lemma 4. The function f is convex, `-Lipschitz, and η-smooth, with ` ≤ L and η ≤ H .

Furthermore, optimizing f is equivalent to “finding” the vectors v1, . . . , vD+1. In particular, until a
point that has a substantial inner product with all of v1, . . . , vD+1 is found, the algorithm will remain
far from the minimum:

Lemma 5. For any H,L > 0, D ≥ 1, and orthonormal v1, ..., vD+1, for any x with
∣∣v>D+1x

∣∣ ≤ `
η

f(x)− min
x:‖x‖≤1

f(x) ≥ min

{
L

2
√
D + 1

,
H

20(D + 1)2

}
The function also has the property that if x has a small inner product with vt, . . . , vD+1, then the
gradient oracle will reveal little information about f when queried at x:

16

Lemma 6. For any x with |〈x, vr〉| ≤ `
η for all r ≥ t, both the function value f(x) and gradient

∇f(x) can be calculated from v1, . . . , vt only.

In Appendix A, we studied the situation where orthonormal v1, . . . , vD+1 are chosen uniformly at
random and a sequence of sets of vectors X1, . . . , XD+1 are generated as

Xt (V) = Xt

(
V<t1G′<t

+ V 1¬G′<t

)
(70)

where
G′<t =

r
∀r < t, ∀x ∈ Xr, ∀j ≥ r |〈x, vj〉| ≤

c

2

z
(71)

Take c = 2`
η and consider the dependency graph. Let X1 be the set of queries made in vertices at

depth 1 in the graph (i.e. they have no parents). Let X2 be the set of queries made in vertices at depth
2 in the graph (i.e. their parents correspond to the queries in X1). Continue in this way for each
t ≤ D, and let XD+1 = {x̂} correpond to the algorithm’s output, which is allowed to depend on all
queries and oracle responses in the graph, and thus has depth D + 1.

SupposingG′<t, for all queries x ∈ X1∪· · ·∪Xt−1 and for all r ≥ t−1 we have |〈x, vr〉| ≤ c
2 = `

η .
Therefore, by Lemma 6 all of the function evaluations and gradients returned by the stochastic
gradient oracle are calculable from v1, . . . , vt−1 only. Therefore, all of the queries in Xt are a
deterministic function of V<t (since we are currently considering only deterministic optimization
algorithms), soXt satisfies the required decomposition property (70). Finally, the queries are required
to be in the domain of f , thus they will have norm bounded by 1.

Therefore, by Lemma 2, when the dimension

m ≥ D + 1 +N + max
{

32N2, 200 (D + 1)
3

(1 +
√

2N)2
}

log
(
2(D + 1)2N

)
(72)

with probability 1/2, all x ∈ X1∪· · ·∪Xt+1 including the algorithm’s output x̂ satsify |〈x, vD+1〉| ≤
`
η so by Lemma 5

f(x̂)− min
x:‖x‖≤1

f(x) ≥ min

{
L

2
√
D + 1

,
H

20(D + 1)2

}
(73)

Therefore, by Yao’s minimax principle for any randomized algorithm A

max
V

EX̂∼A
[
f(X̂)

]
− min
x:‖x‖≤1

f(x) ≥ min
deterministicA

EV [f(x̂)]− min
x:‖x‖≤1

f(x)

≥ min

{
L

4
√
D + 1

,
H

40(D + 1)2

}
(74)

The statistical term L
8
√
N

follows from Lemma 10.

B.1 Deferred proofs

Lemma 4. The function f is convex, `-Lipschitz, and η-smooth, with ` ≤ L and η ≤ H .

Proof. Since f̃ is the maximum of `-Lipschitz affine functions, it is convex and `-Lipschitz. Further-
more, by Proposition 12.29 [5], f , the η-Moreau Envelope of f̃ is η-smooth and

∇f(x) = η

(
x− arg min

y
f̃(y) +

η

2
‖y − x‖2

)
(75)

The minimizing y satisfies that η(x− y) ∈ ∂f̃(y) (where ∂f̃(y) denotes the set of subgradients of f̃
at y), and since f̃ is `-Lipschitz this implies that ‖∇f(x)‖ ≤ `.

Lemma 5. For any H,L > 0, D ≥ 1, and orthonormal v1, ..., vD+1, for any x with
∣∣v>D+1x

∣∣ ≤ `
η

f(x)− min
x:‖x‖≤1

f(x) ≥ min

{
L

2
√
D + 1

,
H

20(D + 1)2

}

17

Proof. First

min
x:‖x‖≤1

f(x) ≤ f

(
−
D+1∑
r=1

vr√
D + 1

)
≤ f̃

(
−
D+1∑
r=1

vr√
D + 1

)
≤ − `√

D + 1
(76)

Now, for an arbitrary point x such that
∣∣v>D+1x

∣∣ ≤ `
η = 1

10(D+1)1.5 , consider

y∗ = proxf̃ (x, η) = arg min
y

{
max

1≤r≤D+1

(
`v>r y −

5`2(r − 1)

η

)
+
η

2
‖y − x‖2

}
(77)

Since y∗ is the minimizer, η(x − y∗) ∈ ∂f̃(y∗) and since f̃ is `-Lipschitz, ‖x− y∗‖ ≤ `
η . Thus

v>D+1y
∗ ≥ − 2`

η and

f(x) = f̃(y∗) +
η

2
‖y∗ − x‖2 (78)

= max
1≤r≤D+1

(
`v>r y

∗ − 5`2(r − 1)

η

)
+
η

2
‖y∗ − x‖2 (79)

≥ `v>D+1y
∗ − 5`2D

η
(80)

≥ −2`2

η
− 5`2D

η
(81)

≥ −5`2(D + 1)

η
(82)

Combining (76) and (82), for any x such that
∣∣v>D+1x

∣∣ ≤ `
η

f(x)− min
x:‖x‖≤1

f(x) ≥ `√
D + 1

− 5`2(D + 1)

η
= min

{
L

2
√
D + 1

,
H

20(D + 1)2

}
(83)

Lemma 6. For any x with |〈x, vr〉| ≤ `
η for all r ≥ t, both the function value f(x) and gradient

∇f(x) can be calculated from v1, . . . , vt only.

Proof. Let x be a point such that
∣∣v>r x∣∣ ≤ `

η for all r ≥ t. By Proposition 12.29 [5]

∇f(x) = η
(
x− proxf̃ (x, η)

)
(84)

Since f is `-Lipschitz (Lemma 4),
∥∥∥x− proxf̃ (x, η)

∥∥∥ ≤ `
η . Consequently, for y∗ = proxf̃ (x, η) we

have
∣∣v>r y∗∣∣ ≤ 2`

η for all r ≥ t. Furthermore,

∇f(x) = η(x− y∗) ∈ conv
{
`vr : r ∈ arg max

1≤r≤D+1

(
`v>r y

∗ − 5`2(r − 1)

η

)}
(85)

For any r > t

`v>r y
∗ − 5`2(r − 1)

η
≤ 2`2

η
− 5`2(r − 1)

η
= −

5`2
(
r − 7

5

)
η

(86)

Whereas

`v>t y
∗ − 5`2(t− 1)

η
≥ −2`2

η
− 5`2(t− 1)

η
= −

2`2
(
t− 3

5

)
η

(87)

For any r > t (86) is less than (87), thus no r > t can be in the arg max in (85). Therefore, using
only v1, . . . , vt we can calculate

f(x) = inf
y

{
max

1≤r≤D+1

(
`v>r y −

5`2(r − 1)

η

)
+
η

2
‖y − x‖2

}
(88)

= inf
y

{
max
1≤r≤t

(
`v>r y −

5`2(r − 1)

η

)
+
η

2
‖y − x‖2

}
(89)

(90)

18

and

proxf̃ (x, η) = arg min
y

{
max

1≤r≤D+1

(
`v>r y −

5`2(r − 1)

η

)
+
η

2
‖y − x‖2

}
(91)

= arg min
y

{
max
1≤r≤t

(
`v>r y −

5`2(r − 1)

η

)
+
η

2
‖y − x‖2

}
(92)

from which we get∇f(x) = η(x− proxf̃ (x, η)).

C Proof of Theorem 2

Theorem 2. Let L,B ∈ (0,∞), H ∈ [0,∞], N ≥ D ≥ 1, let G be any oracle graph of depth D and
size N and consider the optimization problem (G,Oprox,FL,H,B). For any randomized algorithm
A = (R1, . . . , RN , X̂), there exists a distribution P and a convex, L-Lipschitz, and H-smooth
function f on a B-bounded domain in Rm for m = O

(
max

{
N2, D3N

}
log (DN)

)
such that

E z∼P
X̂∼A

[
f(X̂; z)

]
−min

x
Ez∼P [f(x; z)] ≥ Ω

(
min

{
LB

D
,
HB2

D2

}
+
LB√
N

)
Proof. Without loss of generality, assume B = 1, the lower bound can be proven for other values of
B by scaling inputs to our construction by 1/B. Let

η = min {H, 2LD} γ =
4L

η
√

2D
a = 2c =

1√
8D3

(93)

Define the following scalar function

φc(z) =


0 |z| ≤ c
2(|z| − c)2 c < |z| ≤ 2c

z2 − 2c2 2c < |z| ≤ γ
2γ |z| − γ2 − 2c2 |z| > γ

(94)

It is straightforward to confirm that φc is convex, 2γ-Lipschitz continuous, and 4-smooth. Let P
be the uniform distribution over {1, 2}. Let v1, v2, . . . , v2D be a set of orthonormal vectors drawn
uniformly at random and define

f(x; 1) =
η

8

(
−2av>1 x+ φc

(
v>2Dx

)
+

2D−1∑
r=3,5,7,...

φc
(
v>r−1x− v>r x

))
(95)

f(x; 2) =
η

8

(
2D∑

r=2,4,6,...

φc
(
v>r−1x− v>r x

))
(96)

F (x) = Ez∼P [f(x; z)] =
1

2
(f(x; 1) + f(x; 2)) (97)

=
η

16

(
−2av>1 x+ φc

(
v>2Dx

)
+

2D∑
r=2

φc
(
v>r−1x− v>r x

))
(98)

The random choice of V determines a distribution over functions f(·; 1) and f(·; 2). We will lower
bound the expectation (over V) of the suboptimality of any deterministic algorithm’s output, and then
apply Yao’s minimax principle.

First, we show that the functions f(·; 1) and := f(·; 2) are convex, L-Lipschitz, and H-smooth:

Lemma 7. For any H,L ≥ 0, D ≥ 1, and orthonormal v1, ..., v2D, and with η, γ, a, and c chosen
as in (93), f(·; 1) and f(·; 2) are convex, L-Lipschitz, and H-smooth.

Next, we show that optimizing F is equivalent to “finding” a large number of the vectors v1, . . . , v2D:

19

Lemma 8. For any H,L ≥ 0, D ≥ 1, and orthonormal v1, ..., v2D, and with η, γ, a, and c chosen
as in (93), for any x such that

∣∣v>r x∣∣ ≤ c
2 for all r > D

F (x)− min
x:‖x‖≤1

F (x) ≥ min

{
L

32D
,

H

64D2

}

Next, we show that at any point x such that
∣∣v>r x∣∣ ≤ c

2 for all r ≥ t, the function value, gradient, and
prox of f(·; 1) and f(·; 2) at x are calculable using v1, . . . , vt only:

Lemma 9. For any x such that
∣∣v>r x∣∣ ≤ c

2 for all r ≥ t, and any β ≥ 0 the function values, gradients,
and proxs f(x; 1), f(x; 2),∇f(x; 1),∇f(x; 2), proxf(·,1)(x, β), and proxf(·,2)(x, β) are calculable
using β, x, v1, . . . , vt only.

In Appendix A, we studied the situation where orthonormal v1, . . . , v2D are chosen uniformly at
random and a sequence of sets of vectors X1, . . . , X2D are generated as

Xt (V) = Xt

(
V<t1G′<t

+ V 1¬G′<t

)
(99)

where

G′<t =
r
∀r < t, ∀x ∈ Xr, ∀j ≥ r |〈x, vj〉| ≤

c

2

z
(100)

Consider the dependency graph, and let X1 be the set of queries made in vertices at depth 1 in the
graph (i.e. they have no parents). Let X2 be the set of queries made in vertices at depth 2 in the graph
(i.e. their parents correspond to the queries in X1). Continue in this way for each t ≤ D, and then let
XD+1 = {x̂} correpond to the output of the optimization algorithm, which for now is deterministic.

Suppose G′<t. Then for all of the queries x ∈ X1 ∪ · · · ∪ Xt−1 and for all r ≥ t − 1 we have
|〈x, vr〉| ≤ c

2 . Therefore, by Lemma 9 the function values, gradients, and proxs of f(·; 1) and f(·; 2)
are calculable based only on the query points and v1, . . . , vt−1. Therefore, all of the queries in Xt

are a deterministic function of V<t only so Xt satisfies the required decomposition property (99).
Finally, the queries are required to be in the domain of f , thus they will have norm bounded by B.

Therefore, by Lemma 2 for

m ≥ 2D +N + max
{

32N2, 128B2D3(1 +
√

2N)2
}

log
(
8D2N

)
(101)

with probability 1/2 for every x ∈ X1 ∪ · · · ∪XD+1 which includes x̂, |〈x, vr〉| ≤ c
2 for r > D, so

by Lemma 8

f(x̂)− min
x:‖x‖≤1

f(x) ≥ min

{
L

32D
,

H

64D2

}
(102)

Therefore,

min
deterministicA

EV
[
f(x̂)− min

x:‖x‖≤1
f(x)

]
≥ min

{
L

64D
,

H

128D2

}
(103)

so by Yao’s minimax principle, for any randomized algorithm A

max
V

EX̂∼A

[
f(X̂)− min

x:‖x‖≤1
f(x)

]
≥ min

{
L

64D
,

H

128D2

}
(104)

The statistical term LB
8
√
N

follows from Lemma 10.

C.1 Deferred proof

Lemma 7. For any H,L ≥ 0, D ≥ 1, and orthonormal v1, ..., v2D, and with η, γ, a, and c chosen
as in (93), f(·; 1) and f(·; 2) are convex, L-Lipschitz, and H-smooth.

20

Proof. The functions f(·; 1) and f(·; 2) are a sum of linear functions and φc, which is convex;
therefore both are convex. Also, the scalar function φc is 2γ-Lipschitz, so

‖∇f(x; 1)‖2 =

∥∥∥∥∥η8
(
−2av1 + φ′c

(
v>2Dx

)
v2D +

2D−1∑
r=3,5,7,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)∥∥∥∥∥
2

(105)

≤
η2
(
a2 + (2D − 1)γ2

)
16

≤ 2Dη2γ2

16
= L2 (106)

where we used that a = 1√
8D3

< γ = 4L
η
√
2D

. Similarly,

‖∇f(x; 2)‖2 =

∥∥∥∥∥η8
(

2D∑
r=2,4,6,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)∥∥∥∥∥
2

≤ 2Dη2γ2

16
= L2 (107)

Therefore, f(·; 1) and f(·; 2) are L-Lipschitz. Furthermore, since φc is 4-smooth,∣∣v>i ∇2f(x; 1)vj
∣∣ ≤ {η

2 |i− j| ≤ 1

0 |i− j| > 1
and

∣∣v>i ∇2f(x; 2)vj
∣∣ ≤ {η

2 |i− j| ≤ 1

0 |i− j| > 1
(108)

therefore, the maximum eigenvalue of∇2f(·; 1) and ∇2f(·; 2) is at most η ≤ H .

Lemma 8. For any H,L ≥ 0, D ≥ 1, and orthonormal v1, ..., v2D, and with η, γ, a, and c chosen
as in (93), for any x such that

∣∣v>r x∣∣ ≤ c
2 for all r > D

F (x)− min
x:‖x‖≤1

F (x) ≥ min

{
L

32D
,

H

64D2

}

Proof. First, we upper bound minx:‖x‖≤1 F (x). Recalling that a = 1√
8D3

, define

x∗ = a

2D∑
r=1

(2D + 1− r)vr (109)

‖x∗‖2 =
1

8D3

(
2D(2D + 1)(4D + 1)

6

)
≤ 1 (110)

For this x∗, v>r−1x
∗ − v>r x∗ = v>2Dx

∗ = a and with our choice of parameters (93), 2c = a < γ, so
that φ′c(a) = 2a, thus

∇F (x∗) =
η

16

(
−2av1 + φ′c

(
v>2Dx

∗) v2D +

2D∑
r=2

φ′c
(
v>r−1x

∗ − v>r x∗
)

(vr−1 − vr)

)
(111)

thus,

∇F (x∗)>v1 = −2a+ φ′c (a) = 0 (112)

∇F (x∗)>vr = −φ′c (a) + φ′c (a) = 0 2 ≤ r ≤ 2D − 1 (113)

∇F (x∗)>v2D = −φ′c (a) + φ′c (a) = 0 (114)

Since ‖x∗‖ ≤ 1 and ∇F (x∗) = 0, we conclude

min
x:‖x‖≤1

F (x) = F (x∗) =
η

16

(
−2Da2 − 4Dc2)

)
= −ηDa

2

4
= − η

32D2
(115)

Let XD =
{
x : ‖x‖ ≤ 1,

∣∣v>r x∣∣ ≤ c
2 ∀r > D

}
. We will now lower bound

min
x∈XD

F (x) = min
x:‖x‖≤1

F (x) s.t.
∣∣v>r x∣∣ ≤ c

2
∀r > D (116)

21

Introducing dual variables λD+1, ..., λ2D ≥ 0, solving (116) amounts to finding an x ∈ XD and a set
of non-negative λs such that∇F (x) = −

∑2D
r=D+1 λr sign

(
v>r x

)
vr and such that λr

(
v>r x− c

2

)
=

0 for each r. Let

xD =

D+1∑
r=1

(
a (D + 1− r) +

c

2

)
vr, λD+1 = 2a, λD+2 = · · · = λk = 0 (117)

Since a (D + 1− r) + c
2 < a (2D + 1− r) for r ≤ D + 1 and ‖x∗‖ ≤ 1 it follows that ‖xD‖ ≤ 1.

Furthermore, since v>r−1xD − v>r xD = a for 2 ≤ r ≤ D + 1 and 2c = a < γ, the gradient

∇F (xD)>v1 = −2a+ φ′c (a) = 0 (118)

∇F (xD)>vr = −φ′c (a) + φ′c (a) = 0 2 ≤ r ≤ D (119)

∇F (xD)>vD+1 = −φ′c (a) + φ′c

(c
2

)
= −2a = −λD+1 (120)

∇F (xD)>vr = 0 = −λr D + 2 ≤ r ≤ 2D (121)

Therefore,

min
x∈XD

F (x) = F (xD) =
η

16

(
−Da2 − ac− 2Dc2

)
= −η(3D + 1)a2

32
= −η(3D + 1)

256D3
(122)

Combining (115) and (122) we have that

min
x∈XD

F (x)− min
x:‖x‖≤1

F (x) = F (xD)− F (x∗)

=
η

32D2
− η(3D + 1)

256D3
≥ η

32D2
− η

64D2
= min

{
L

32D
,

H

64D2

}
(123)

Lemma 9. For any x such that
∣∣v>r x∣∣ ≤ c

2 for all r ≥ t, and any β ≥ 0 the function values, gradients,
and proxs f(x; 1), f(x; 2),∇f(x; 1),∇f(x; 2), proxf(·,1)(x, β), and proxf(·,2)(x, β) are calculable
using β, x, v1, . . . , vt only.

Proof. Suppose that x is a point such that
∣∣v>r x∣∣ ≤ c

2 for all r ≥ t, and β ≥ 0. Therefore,
φc
(
v>r−1x− v>r x

)
= 0 for r > t so

f(x; 1) =
η

8

(
−2av>1 x+ φc

(
v>2Dx

)
+

2D−1∑
r=3,5,7,...

φc
(
v>r−1x− v>r x

))
(124)

=
η

8

(
−2av>1 x+

t∑
r=3,5,7,...

φc
(
v>r−1x− v>r x

))
(125)

f(x; 2) =
η

8

(
2D∑

r=2,4,6,...

φc
(
v>r−1x− v>r x

))
(126)

=
η

8

(
t∑

r=2,4,6,...

φc
(
v>r−1x− v>r x

))
(127)

22

Thus both f(x; 1) and f(x; 2) can be calculated from x, v1, . . . , vt only. Similarly,
φ′c
(
v>r−1x− v>r x

)
= 0 for r > t so

∇f(x; 1) =
η

8

(
−2av1 + φ′c

(
v>2Dx

)
v2D +

2D−1∑
r=3,5,7,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)
(128)

=
η

8

(
−2av1 +

t∑
r=3,5,7,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)
(129)

∇f(x; 2) =
η

8

(
2D∑

r=2,4,6,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)
(130)

=
η

8

(
t∑

r=2,4,6,...

φ′c
(
v>r−1x− v>r x

)
(vr−1 − vr)

)
(131)

Thus ∇f(x; 1) and∇f(x; 2) can also be calculated from x, v1, . . . , vt only.

Now, we consider the proxs at such a point x. Let t′ = t if t is odd, and t′ = t − 1 if t is even.
Let P be the projection operator onto S = Span (v1, . . . , vt′) and let P⊥ be the projection onto the
orthogonal subspace, S⊥. Then, since f(x; 1) = f(Px; 1) + f(P⊥x; 1), we can decompose the
prox:

proxf(·;1)(x, β)

= arg min
y

f(y; 1) +
β

2
‖y − x‖2 (132)

= arg min
y1∈S,y2∈S⊥

f(y1; 1) + f(y2; 1) +
β

2

(
‖y1 − Px‖2 +

∥∥y2 − P⊥x∥∥2) (133)

= arg min
y1∈S

η

8

−2av>1 y1 +

t′∑
r=3,5,7,...

φc
(
v>r−1y1 − v>r y1

)+
β

2
‖y1 − Px‖2 (134)

+ arg min
y2∈S⊥

η

8

φc (v>2Dy2)+

2D−1∑
r=t′+2,t′+4,...

φc
(
v>r−1y2 − v>r y2

)+
β

2

∥∥y2 − P⊥x∥∥2 (135)

= P⊥x+ arg min
y1∈S

η

8

−2av>1 y1 +

t′∑
r=3,5,7,...

φc
(
v>r−1y1 − v>r y1

)+
β

2
‖y1 − Px‖2 (136)

Where we used that
∣∣v>r P⊥x∣∣ =

∣∣v>r x∣∣ ≤ c
2 for all r > t′, so setting y2 = P⊥x achieves the

minimum since every term in the expression is zero and function is non-negative. The vector
P⊥x is calculable from x, v1, . . . , vt′ ⊆ x, v1, . . . , vt, and similarly the second term is a minimiza-
tion depends only on β, x, v1, . . . , vt′ ⊆ β, x, v1, . . . , vt. A nearly identical argument shows that
proxf(·;2)(x, β) has the same property.

D Statistical term

Lemma 10. For any L,B > 0, there exists a distribution P , and an L-Lipschitz, 0-smooth function
f defined on [−B,B] such that the output x̂ of any potentially randomized optimization algorithm
which accesses a stochastic gradient or prox oracle at most N times satisfies

EX̂∼A

[
Ez∼P

[
f(X̂; z)

]
− min
|x|≤B

Ez∼P [f(x; z)]

]
≥ LB

8
√
N

Proof. Let ε > 0 and p ∼ Uniform {p1, p−1} where p1 = 1+ε
2 and p−1 = 1−ε

2 . Define Pp as

PPp
[Z = 1] = 1− PPp

[Z = −1] = p (137)

23

Then, let f(x; z) = zLx, so Ez∼Pp [f(x; z)] = (2p − 1)Lx. When p = p1, (2p − 1) > 0 so the
minimizer is x = −B with value −LB(2p− 1) = −LBε, and when p = p−1, (2p− 1) < 0 so the
minimizer is x = B, also with value −LBε. Furthermore, if p = p1 and x ≥ 0 then it is at least
LBε-suboptimal, and if p = p2 and x ≤ 0 then it is also at least LBε-suboptimal.

Now consider any deterministic optimization algorithm which accesses the gradient or prox oracle
N times. Each gradient or prox oracle response can be simulated using a single z ∼ Pp, so the
algorithm’s output is x̂ = x̂(z1, . . . , zN) ∈ [−B,B]. Consider

Ep∼Uniform{p1,p−1},z∼Pp
[(2p− 1)Lx̂(z1, . . . , zN) | z1, . . . , zN]

≥ LBεPp∼Uniform{p1,p−1},z∼Pp
[sign(x̂(z1, . . . , zN)) 6= sign(2p− 1) | z1, . . . , zN] (138)

Furthermore, the Bayes optimal estimate x̂ of sign(2p− 1) is

x̂(z1, . . . , zN) =

{
1 1

N

∑N
i=1 zi ≥ 0

−1 1
N

∑N
i=1 zi < 0

(139)

so

Pp∼Uniform{p1,p−1},z∼Pp

[
sign(X̂(z1, . . . , zN)) 6= sign(2p− 1)

∣∣∣ z1, . . . , zN]
≥ Pp∼Uniform{p1,p−1},z∼Pp

[∣∣∣∣∣ 1

N

N∑
i=1

zi − (2p− 1)

∣∣∣∣∣ ≥ ε
]

(140)

= Pz∼Pp−1

[∣∣∣∣∣ 1

N

N∑
i=1

zi − ε

∣∣∣∣∣ ≥ ε
]

(141)

This simply requires lower bounding the tail of the Binomial
(
N, 1−ε2

)
distribution. Using Theorem

2.1 in [23],

Pz∼Pp−1

[∣∣∣∣∣ 1

N

N∑
i=1

zi − ε

∣∣∣∣∣ ≥ ε
]
≥ 1− Φ

(
εN√

N(1 + ε)(1− ε)

)
= 1− Φ

(
ε
√
N√

1− ε2

)
(142)

where Φ is the distribution function of the standard normal. Let ε = 1
2
√
N

, then ε
√
N√

1−ε2 <
3
5 and

Pz∼Pp−1

[∣∣∣∣∣ 1

N

N∑
i=1

zi − ε

∣∣∣∣∣ ≥ ε
]
≥ 1− Φ

(
3

5

)
≥ 1

4
(143)

Therefore, we conclude that

Ep∼Uniform{p1,p−1},z∼Pp
[(2p− 1)Lx̂(z1, . . . , zN) | z1, . . . , zN] ≥ LBε

4
=

LB

8
√
N

(144)

Therefore, by Yao’s minimax principle, for any randomized algorithm A

max
p∈{p1,p−1}

EX̂∼A
[
Ez∼Pp

[
f(X̂; z)

]
−min

x
Ez∼Pp [f(x; z)]

]
≥ LB

8
√
N

(145)

E Supplement to Section 4

E.1 Smoothed accelerated mini-batch SGD

Smoothed accelerated mini-batch SGD is the composition of two ingredients. First, we approximate
the non-smooth f with a smooth surrogate, and then perform accelerated mini-batch SGD on the
surrogate [9, 14]. In particular, we use the β-Moreau envelope f (β) of f :

f (β)(x; z) = inf
y
f(y; z) +

β

2
‖y − x‖2 (146)

Since f is L-Lipschitz, f (β) has the following properties (Proposition 12.29 [5]):

24

1. f (β) is β-smooth
2. ∇f (β)(x; z) = β(x− proxf(·;z)(x, β))

3. f (β)(x; z) ≤ f(x; z) ≤ f (β)(x; z) + L2

2β for all x

We use the prox oracle to execute A-MB-SGD on the L-Lipschitz and β-smooth f (β), with updates

wt = αyt + (1− α)xt (147)

yt+1 = wt −
η

M

M∑
i=1

β
(
wt − proxf(·;zi)(wt, β)

)
(148)

xt+1 = αyt+1 + (1− α)xt (149)

The A-MB-SGD algorithm will converge on f (β) at a rate (see [9, 14])

E [f(xT ; z)]−min
x

E [f(x; z)] = O

(
min

{
L√
T
,
β

T 2

}
+

L√
MT

)
(150)

Choosing β = min {LT,H} the conclude

E [f(xT ; z)]−min
x

E [f(x; z)] ≤ E
[
f (β)(xT ; z)

]
+

L

2T
−min

x
E
[
f (β)(x; z)

]
(151)

= O

(
min

{
L√
T
,

min {LT,H}
T 2

}
+

L√
MT

+
L

T

)
(152)

= O

(
min

{
L

T
,
H

T 2

}
+

L√
MT

)
(153)

which matches the lower bound in Theorem 2.

E.2 Wait-and-collect accelerated mini-batch SGD

Algorithm 2 "Wait-and-collect" accelerated minibatch SGD

Initialize x̂ = x̃ = x0 = 0,, parameter α.
for t = 1, 2, . . . , T do

if mod (t, 2τ + 1) ≤ τ then
Query stochastic gradient at x̃.
Update xt ← xt−1, g̃ = 0.

else if mod (t, 2τ + 1) > τ and mod (t, 2τ + 1) ≤ 2τ then
Update xt ← xt−1.
Receive noisy gradient gt−1−τ , update g̃ ← g̃ + (1/τ) ∗ gt−1−τ

else if mod (t, 2τ + 1) = 0 then
Update xt ← x̃− ηg̃.
Update x̂← αx̂+ (1− α)xt, x̃← αx̂+ (1− α)xt.

end if
end for

E.3 Analysis of technical results in Section 4.4

Applying SVRG under intermittent synchronization graph To apply SVRG method to solve
stochastic convex optimization problems under intermittent synchronization graph. We adopt the
approach by [15, 25], first we sample n instances {z1, ..., zn} and solve a regularized empirical risk
minimization problem based on {z1, ..., zn}:

min
x
F̂λ(x) :=

1

n

n∑
i=1

f(x; zi) +
λ

2
‖x‖2 , (154)

where λ is the regularization parameter will specified later. We will apply SVRG algorithm on the
intermittent synchronization graph to solve above empirical objective (154) to certain sub-optimality.

25

The SVRG method works in stages, at each stage, we first use n/KM communication rounds to
calculate the full gradient of (154) at a reference point x̃, and then using a single chain to perform
stochastic gradient updates, equipped with∇F̂ (w̃) to reduce the variance. We choose λ � L/(

√
nB),

which will makes the objective (154) to be at least L/(
√
nB)-strongly convex, thus the condition

number of (154) will be bounded by O(H/(L/(
√
nB))) = O(H

√
nB/L). The SVRG analysis [13]

requires the number of stochastic gradient updates to be scales as the condition number, so here we
will use O(H

√
nB/(LK)) communication rounds to perform the stochastic updates, since one chain

within each communication round has length K. Let x̂∗ = arg minx F̂λ(x), and let x̂s to be the
iterate after running the SVRG algorithm for s-stages. By the standard results of SVRG (Theorem 1
in [13]), we have

E
[
F̂λ(x̂s)

]
− F̂λ(x̂∗) ≤

(
1

2

)s
.

By standard estimation-optimization error decomposition (e.g. Section 4 in [22]), we have

E [F (x̂s)]− F (x∗) ≤2E
[
F̂λ(x̂s)− F̂λ(x̂∗)

]
+
λB2

2
+O

(
L2

λn

)
≤
(

1

2

)s
+O

(
LB√
n

)
= O

(
LB√
n

)
, (155)

given s � log(n/(LB)). Thus to implement SVRG successfully, we need to choose n such that the
following two conditions are satisfied:

n

KM
∗ s ≤ T, and

H
√
nB

LK
∗ s ≤ T.

Thus we know by choosing n below will satisfy above condition:

n � min

{
K2T 2L2

H2B2 log2(MKT/L)
,

MKT

log(MKT/L)

}
,

substitute the scale of n to (155) we get

E [F (x̂s)]− F (x∗) ≤O

(
HB2

KT
log

(
MKT

L

)
+

LB√
MKT

(
log

(
MKT

L

))1/2
)

≤O
((

HB2

KT
+

LB√
MKT

)
log

(
MKT

L

))
,

and we obtain the desired result.

26

	Introduction
	The graph-based oracle model
	Lower bounds
	Specific dependency graphs
	Sequential computation: the path graph
	Simple parallelism: the layer graph
	Delayed updates
	Intermittent communication

	Summary
	Main lower bound lemma
	Proof of Lemmas 1 and 3

	Proof of Theorem 1
	Deferred proofs

	Proof of Theorem 2
	Deferred proof

	Statistical term
	Supplement to Section 4
	Smoothed accelerated mini-batch SGD
	Wait-and-collect accelerated mini-batch SGD
	Analysis of technical results in Section 4.4

