
www.twosigma.com

Principles of REST API Design

May 19, 2017

Presented By: Amy Wasik

Two Sigma Investments, LP

Important Legal Information:

This document is being distributed for informational and educational
purposes only and is not an offer to sell or the solicitation of an offer to
buy any securities or other instruments. The information contained
herein is not intended to provide, and should not be relied upon for
investment advice. The views expressed herein are not necessarily the
views of Two Sigma Investments, LP or any of its affiliates (collectively,
“Two Sigma”). Such views reflect significant assumptions and subjective
of the author(s) of the document and are subject to change without
notice. The document may employ data derived from third-party
sources. No representation is made as to the accuracy of such
information and the use of such information in no way implies an
endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other
material used herein may be owned by entities other than Two Sigma. If
so, such copyrights and/or trademarks are most likely owned by the
entity that created the material and are used purely for identification
and comment as fair use under international copyright and/or
trademark laws. Use of such image, copyright or trademark does not
imply any association with such organization (or endorsement of such
organization) by Two Sigma, nor vice versa.

Software Architecture

May 19, 2017

Single Server

Services

REST Services

Our Application

May 19, 2017

Application

Job Job Job Job

Host

Our Application

May 19, 2017

Application

Job Job Job Job

Host

Application

Job Job Job Job

Host

Application

Job Job Job Job

Host

Application

Job Job Job Job

Host

Application

Job Job Job Job

Host

Application

Job Job Job Job

Host

Application

Job Job Job

Host

Application

Job Job Job Job

Host

Our Application

May 19, 2017

Application

Job Job Job Job

Host

Monitor Monitor

Host Host

Our Application

May 19, 2017

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Software Architecture

May 19, 2017

Single Server

Services

REST Services

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

High-level

Javascript

Low-level

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient Application 2

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

Client API

Client Client Client

Host

Host Host Host

Scheduler

Host

Job Job Job

Host

Monitor Monitor

Host

Services Architecture

May 19, 2017

• Low Coupling

• Maintainable

• Interoperable

• Language Agnostic

• Shareable

• Scalable

• Resilient

Client API

Client Client Client

Host

Host Host Host

Scheduler

Job Job Job Job

Host

Monitor Monitor

Host Host

Communication

May 19, 2017

Single Server:

Local API Method
Calls

Services:

Inter-process
Communication

(IPC)

Inter-Process Communication (IPC)

May 19, 2017

• Remote Procedure Calls (RPC)

• Use a library to convert local calls to remote ones

public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}

Software Architecture

May 19, 2017

Single Server

Services

REST Services

REST Architecture

May 19, 2017

Additional Constraints Benefits

Stateless Scalability

• Representational State Transfer (REST)

REST Architecture

May 19, 2017

Additional Constraints Benefits

Stateless Scalability

Cacheable Increased Capacity

• Representational State Transfer (REST)

REST Architecture

May 19, 2017

Additional Constraints Benefits

Stateless Scalability

Cacheable Increased Capacity

Layered Low Coupling/Interoperability

• Representational State Transfer (REST)

REST Architecture

May 19, 2017

https://martinfowler.com/articles/richardsonMaturityModel.html

4 Levels of Adherence Benefits

0 – HTTP Transport

1 – Resource Oriented Design

2 – HTTP Verbs as actions on resources

3 – Hypertext as the Engine of Application State (HATEOAS)

• Representational State Transfer (REST)

• API Constraints

https://martinfowler.com/articles/richardsonMaturityModel.html

REST Architecture

May 19, 2017

https://martinfowler.com/articles/richardsonMaturityModel.html

4 Levels of Adherence Benefits

0 – HTTP Transport Standard Interface

1 – Resource Oriented Design Easier-to-Use API

2 – HTTP Verbs as actions on resources Complete API

3 – Hypertext as the Engine of Application State (HATEOAS) Easy-to-Learn API

• Representational State Transfer (REST)

• API Constraints

https://martinfowler.com/articles/richardsonMaturityModel.html

REST Level 0

May 19, 2017

HTTP Transport

 Readable object encoding (typically JSON)

 Standard URI format

Level 0: RPC over HTTP

May 19, 2017

public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}

GET http://example.com/createAJob?name=t&...

GET http://example.com/submitJob?id=123

GET http://example.com/getJobs?name=test

GET http://example.com/getMyJobs?user=me

GET http://example.com/getJobs?query=...

GET http://example.com/getJob?id=123

GET http://example.com/updateJob?id=123&

Level 0: RPC over HTTP

May 19, 2017

GET http://example.com/createAJob?name=t&user=userA...

HTTP/1.1 200 OK

[other headers]

{ "id": 123

}

GET http://example.com/submitJob?id=123

HTTP/1.1 200 OK

[other headers]

{ "error" : "no permission"

}

REST Level 1

May 19, 2017

Resource Oriented Design

• Divide and conquer

• Easy to understand and navigate API

Standard URI Format

• /{resource}

• /{resource}/{resource-id}

• /{resource}/{resource-id}/{sub-resource}

• /{resource}/{resource-id}/{sub-resource}/{sub-resource-id}

Object Oriented Design

May 19, 2017

GET http://example.com/createAJob?name=

GET http://example.com/submitJob?id=12

GET http://example.com/getJobs?name=

GET http://example.com/getMyJobs?user=

GET http://example.com/getJobs?query=

GET http://example.com/getJob?id=123

GET http://example.com/updateJob?id=123

GET http://example.com/jobs/create?name=t&user=me

GET http://example.com/jobs/get?name=test

GET http://example.com/jobs/getMy?user=me

GET http://example.com/jobs/get?query=...

GET http://example.com/jobs/123

GET http://example.com/jobs/123/update?name=t2...

GET http://example.com/jobs/123/instances/start

GET http://example.com/jobs/123/instances

REST Level 2

May 19, 2017

HTTP Verbs Represent Actions

• More complete and structured APIs

Common Verbs

• GET – Read (Nullipotent)

• PUT – Update (Idempotent)

• POST - Create

• DELETE – Remove (Idempotent)

REST Level 2

May 19, 2017

Standard HTTP Response Codes

• Standard results of actions

Success Client Error Server Error

200 OK 400 Bad Request 500 Internal Server Error

201 Created 401 Unauthorized (authentication failure)

204 No Content 403 Forbidden (not allowed access)

404 Not Found

HTTP Verbs for Actions

May 19, 2017

GET http://example.com/jobs/create?name=t&user=me

GET http://example.com/jobs/get?name=test

GET http://example.com/jobs/getMy?user=me

GET http://example.com/jobs/get?query=...

GET http://example.com/jobs/123

GET http://example.com/jobs/123/update?name=t2...

GET http://example.com/jobs/123/instances/start

GET http://example.com/jobs/123/instances

POST http://example.com/jobs

-d '{"name":"test", "user": "me", …}'

GET http://example.com/jobs?name=test

GET http://example.com/jobs?user=me

GET http://example.com/jobs?query=...

GET http://example.com/jobs/123

PUT http://example.com/jobs/123

-d '{"name":"job" …}'

POST http://example.com/jobs/123/instances

GET http://example.com/jobs/123/instances

HTTP Verbs for Actions

May 19, 2017

POST http://example.com/jobs

-d '{"name":"test", "user": "me", …}'

HTTP/1.1 201 Created

[other headers]

{ "id": 123

}

POST http://example.com/jobs/123/instances

HTTP/1.1 403 Forbidden

[other headers]

{ "errorCode" : 10,

"moreInfo" : "no permission to run this job"

}

REST Level 3

May 19, 2017

REST API Documentation and API Discoverability

• Hypertext As The Engine Of Application State (HATEOAS)

— Adds links to response that indicate useful actions

• Open API

— Provides language-agnostic way to describe REST API

— Lots of tooling for automation

Open API

May 19, 2017

Open API

May 19, 2017

Evolution of the API

May 19, 2017

public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}

Evolution of the API

May 19, 2017

Conclusion

May 19, 2017

• Modern day best practices

• Services architectures

• REST APIs

• Resource Oriented Design

• Self-documenting code

• Next steps

• Evolving APIs

• Complex operations

• Error handling, Standard response types

Additional Resources

May 19, 2017

http://swagger.io/

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

https://martinfowler.com/articles/richardsonMaturityModel.html

Published API Guides:
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf

https://github.com/paypal/api-standards/blob/master/api-style-guide.md

https://cloud.google.com/apis/design/

Thank you!

http://swagger.io/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf
https://github.com/paypal/api-standards/blob/master/api-style-guide.md
https://cloud.google.com/apis/design/

