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• Remote Procedure Calls (RPC)

• Use a library to convert local calls to remote ones

public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}
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Additional Constraints Benefits

Stateless Scalability

Cacheable Increased Capacity

Layered Low Coupling/Interoperability

• Representational State Transfer (REST)
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https://martinfowler.com/articles/richardsonMaturityModel.html

4 Levels of Adherence Benefits

0 – HTTP Transport

1 – Resource Oriented Design

2 – HTTP Verbs as actions on resources

3 – Hypertext as the Engine of Application State (HATEOAS)

• Representational State Transfer (REST)

• API Constraints

https://martinfowler.com/articles/richardsonMaturityModel.html
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https://martinfowler.com/articles/richardsonMaturityModel.html

4 Levels of Adherence Benefits

0 – HTTP Transport Standard Interface

1 – Resource Oriented Design Easier-to-Use API

2 – HTTP Verbs as actions on resources Complete API

3 – Hypertext as the Engine of Application State (HATEOAS) Easy-to-Learn API

• Representational State Transfer (REST)

• API Constraints

https://martinfowler.com/articles/richardsonMaturityModel.html
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HTTP Transport

 Readable object encoding (typically JSON)

 Standard URI format
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public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}

GET http://example.com/createAJob?name=t&...

GET http://example.com/submitJob?id=123

GET http://example.com/getJobs?name=test

GET http://example.com/getMyJobs?user=me

GET http://example.com/getJobs?query=...

GET http://example.com/getJob?id=123

GET http://example.com/updateJob?id=123&
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GET http://example.com/createAJob?name=t&user=userA...

HTTP/1.1 200 OK

[other headers]

{ "id": 123

}

GET http://example.com/submitJob?id=123

HTTP/1.1 200 OK

[other headers]

{ "error" : "no permission"

}
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Resource Oriented Design

• Divide and conquer

• Easy to understand and navigate API

Standard URI Format

• /{resource}

• /{resource}/{resource-id}

• /{resource}/{resource-id}/{sub-resource}

• /{resource}/{resource-id}/{sub-resource}/{sub-resource-id}
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GET http://example.com/createAJob?name= 

GET http://example.com/submitJob?id=12

GET http://example.com/getJobs?name=

GET http://example.com/getMyJobs?user=

GET http://example.com/getJobs?query=

GET http://example.com/getJob?id=123

GET http://example.com/updateJob?id=123 

GET http://example.com/jobs/create?name=t&user=me

GET http://example.com/jobs/get?name=test

GET http://example.com/jobs/getMy?user=me

GET http://example.com/jobs/get?query=...

GET http://example.com/jobs/123

GET http://example.com/jobs/123/update?name=t2...

GET http://example.com/jobs/123/instances/start

GET http://example.com/jobs/123/instances
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HTTP Verbs Represent Actions

• More complete and structured APIs

Common Verbs

• GET – Read (Nullipotent)

• PUT – Update (Idempotent)

• POST - Create

• DELETE – Remove (Idempotent)
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Standard HTTP Response Codes

• Standard results of actions

Success Client Error Server Error

200 OK 400 Bad Request 500 Internal Server Error

201 Created 401 Unauthorized (authentication failure)

204 No Content 403 Forbidden (not allowed access)

404 Not Found
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GET http://example.com/jobs/create?name=t&user=me

GET http://example.com/jobs/get?name=test

GET http://example.com/jobs/getMy?user=me

GET http://example.com/jobs/get?query=...

GET http://example.com/jobs/123

GET http://example.com/jobs/123/update?name=t2...

GET http://example.com/jobs/123/instances/start

GET http://example.com/jobs/123/instances

POST http://example.com/jobs

-d '{"name":"test", "user": "me", …}'

GET http://example.com/jobs?name=test

GET http://example.com/jobs?user=me

GET http://example.com/jobs?query=...

GET http://example.com/jobs/123

PUT http://example.com/jobs/123 

-d '{"name":"job" …}'

POST http://example.com/jobs/123/instances

GET http://example.com/jobs/123/instances
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POST http://example.com/jobs

-d '{"name":"test", "user": "me", …}'

HTTP/1.1 201 Created

[other headers]

{ "id": 123

}

POST http://example.com/jobs/123/instances

HTTP/1.1 403 Forbidden

[other headers]

{ "errorCode" : 10,

"moreInfo" : "no permission to run this job"

}
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REST API Documentation and API Discoverability

• Hypertext As The Engine Of Application State (HATEOAS)

— Adds links to response that indicate useful actions

• Open API

— Provides language-agnostic way to describe REST API

— Lots of tooling for automation
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public interface Jobsystem {

Job createAJob(JobDetails details);

void submitJob(Job j);

List<Job> getJobs(String namePattern);

List<Job> getMyJobs(String user);

List<Job> getJobsOther(String query);

Job getJob(int id);

void updateJob(JobDetails details);

}
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• Modern day best practices

• Services architectures

• REST APIs

• Resource Oriented Design

• Self-documenting code

• Next steps

• Evolving APIs

• Complex operations

• Error handling, Standard response types
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http://swagger.io/

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

https://martinfowler.com/articles/richardsonMaturityModel.html

Published API Guides:
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf

https://github.com/paypal/api-standards/blob/master/api-style-guide.md

https://cloud.google.com/apis/design/

Thank you!

http://swagger.io/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf
https://github.com/paypal/api-standards/blob/master/api-style-guide.md
https://cloud.google.com/apis/design/

