
The Language of Compression

Leif Walsh

Two Sigma Investments
leif.walsh@gmail.com

@leifwalsh

September 22, 2015

1

mailto:leif.walsh@gmail.com
https://twitter.com/leifwalsh

Scope

Today’s talk is about compression

:
▶ In data storage systems (databases, filesystems)
▶ Using general-purpose (lossless) algorithms
▶ On disk, not in memory or over the wire

2

Scope

Today’s talk is about compression:
▶ In data storage systems (databases, filesystems)

▶ Using general-purpose (lossless) algorithms
▶ On disk, not in memory or over the wire

2

Scope

Today’s talk is about compression:
▶ In data storage systems (databases, filesystems)
▶ Using general-purpose (lossless) algorithms

▶ On disk, not in memory or over the wire

2

Scope

Today’s talk is about compression:
▶ In data storage systems (databases, filesystems)
▶ Using general-purpose (lossless) algorithms
▶ On disk, not in memory or over the wire

2

Scope

We’ll talk about systems like:
▶ MySQL (InnoDB, TokuDB)
▶ MongoDB (WiredTiger, TokuMX, RocksDB)
▶ Cassandra
▶ PostgreSQL
▶ Vertica
▶ zfs, btrfs

3

Goal of the Talk

4

Goal

A framework for answering:

▶ How do compression algorithms even work?
▶ How do storage systems use compression?
▶ How should I evaluate the compression of a storage system?
▶ How should I read articles about compression?
▶ How should I write articles about compression?

5

Goal

A framework for answering:
▶ How do compression algorithms even work?

▶ How do storage systems use compression?
▶ How should I evaluate the compression of a storage system?
▶ How should I read articles about compression?
▶ How should I write articles about compression?

5

Goal

A framework for answering:
▶ How do compression algorithms even work?
▶ How do storage systems use compression?

▶ How should I evaluate the compression of a storage system?
▶ How should I read articles about compression?
▶ How should I write articles about compression?

5

Goal

A framework for answering:
▶ How do compression algorithms even work?
▶ How do storage systems use compression?
▶ How should I evaluate the compression of a storage system?

▶ How should I read articles about compression?
▶ How should I write articles about compression?

5

Goal

A framework for answering:
▶ How do compression algorithms even work?
▶ How do storage systems use compression?
▶ How should I evaluate the compression of a storage system?
▶ How should I read articles about compression?

▶ How should I write articles about compression?

5

Goal

A framework for answering:
▶ How do compression algorithms even work?
▶ How do storage systems use compression?
▶ How should I evaluate the compression of a storage system?
▶ How should I read articles about compression?
▶ How should I write articles about compression?

5

About Me

6

Me

Engineer at Two Sigma
▶ We have a lot of data
▶ We care a lot about compression

Previously at Tokutek
▶ Worked on TokuMX, TokuFT
▶ We thought a lot about compression
▶ We evaluated a lot of compression algorithms
▶ We wrote a lot about compression

7

Me

Engineer at Two Sigma
▶ We have a lot of data
▶ We care a lot about compression

Previously at Tokutek
▶ Worked on TokuMX, TokuFT
▶ We thought a lot about compression
▶ We evaluated a lot of compression algorithms
▶ We wrote a lot about compression

7

How to Talk About Compression

8

How to Talk About Compression

Scenario
I have a database which can store 1TB of “user data” in only 200GB of disk.

How much is my database compressing? 80%? 20%? 5x? 1/5? 5:1?

Let’s talk about what this number is going to mean to us…

9

How to Talk About Compression

Scenario
I have a database which can store 1TB of “user data” in only 200GB of disk.

How much is my database compressing?

80%? 20%? 5x? 1/5? 5:1?

Let’s talk about what this number is going to mean to us…

9

How to Talk About Compression

Scenario
I have a database which can store 1TB of “user data” in only 200GB of disk.

How much is my database compressing? 80%? 20%? 5x? 1/5? 5:1?

Let’s talk about what this number is going to mean to us…

9

How to Talk About Compression

Scenario
I have a database which can store 1TB of “user data” in only 200GB of disk.

How much is my database compressing? 80%? 20%? 5x? 1/5? 5:1?

Let’s talk about what this number is going to mean to us…

9

Why Compress?

10

Why Compress?

Data storage is expensive (you’ve heard this)

▶ Replication magnifies your data costs
▶ Maintenance/operations cost scales superlinearly with hardware
▶ SSD is expensive

11

Why Compress?

Data storage is expensive (you’ve heard this)
▶ Replication magnifies your data costs

▶ Maintenance/operations cost scales superlinearly with hardware
▶ SSD is expensive

11

Why Compress?

Data storage is expensive (you’ve heard this)
▶ Replication magnifies your data costs
▶ Maintenance/operations cost scales superlinearly with hardware

▶ SSD is expensive

11

Why Compress?

Data storage is expensive (you’ve heard this)
▶ Replication magnifies your data costs
▶ Maintenance/operations cost scales superlinearly with hardware
▶ SSD is expensive

11

Why Compress?

Compressionmagnifies your
capacity to store data at a fixed cost.

We ask “by what factor does
compressionmultiplymy capacity?”

Compressionminimizes your cost
to provide a fixed capacity.

We ask “by what factor does
compression dividemy cost?”

We should always talk about compression in terms of the
multiplicative factor by which you increase your

cost-effectiveness.

12

Why Compress?

Compressionmagnifies your
capacity to store data at a fixed cost.

We ask “by what factor does
compressionmultiplymy capacity?”

Compressionminimizes your cost
to provide a fixed capacity.

We ask “by what factor does
compression dividemy cost?”

We should always talk about compression in terms of the
multiplicative factor by which you increase your

cost-effectiveness.

12

Why Compress?

Compressionmagnifies your
capacity to store data at a fixed cost.

We ask “by what factor does
compressionmultiplymy capacity?”

Compressionminimizes your cost
to provide a fixed capacity.

We ask “by what factor does
compression dividemy cost?”

We should always talk about compression in terms of the
multiplicative factor by which you increase your

cost-effectiveness.

12

How to Talk About Compression

Say “5x compression”, not “80% compression”.

13

Cost Model

14

Cost Model

Compression ismore expensive than decompression.

▶ Compression is searching for repeated patterns in data.
Searching is expensive.

▶ Decompression is copying bytes out in the order described by encoding,
which isn’t very hard.

Bandwidth speeds for typical compression algorithms (cp is a no-op)
(my laptop, Haswell CPU, Samsung SSD, 362MB tarball of /usr/include):

(MB/s) zlib bz2 lzma lzo lz4 zstd cp
Compress 39 8 3 366 405 293 1466

Decompress 179 28 138 395 774 500 1466

(higher is better)

15

Cost Model

Compression ismore expensive than decompression.
▶ Compression is searching for repeated patterns in data.
Searching is expensive.

▶ Decompression is copying bytes out in the order described by encoding,
which isn’t very hard.

Bandwidth speeds for typical compression algorithms (cp is a no-op)
(my laptop, Haswell CPU, Samsung SSD, 362MB tarball of /usr/include):

(MB/s) zlib bz2 lzma lzo lz4 zstd cp
Compress 39 8 3 366 405 293 1466

Decompress 179 28 138 395 774 500 1466

(higher is better)

15

Cost Model

Compression ismore expensive than decompression.
▶ Compression is searching for repeated patterns in data.
Searching is expensive.

▶ Decompression is copying bytes out in the order described by encoding,
which isn’t very hard.

Bandwidth speeds for typical compression algorithms (cp is a no-op)
(my laptop, Haswell CPU, Samsung SSD, 362MB tarball of /usr/include):

(MB/s) zlib bz2 lzma lzo lz4 zstd cp
Compress 39 8 3 366 405 293 1466

Decompress 179 28 138 395 774 500 1466

(higher is better)

15

Cost Model

Compression ismore expensive than decompression.
▶ Compression is searching for repeated patterns in data.
Searching is expensive.

▶ Decompression is copying bytes out in the order described by encoding,
which isn’t very hard.

Bandwidth speeds for typical compression algorithms (cp is a no-op)
(my laptop, Haswell CPU, Samsung SSD, 362MB tarball of /usr/include):

(MB/s) zlib bz2 lzma lzo lz4 zstd cp
Compress 39 8 3 366 405 293 1466

Decompress 179 28 138 395 774 500 1466

(higher is better)

15

Cost Model

How does compression impact perceived performance?

Compression:
▶ Usually infrequent and done in the background
▶ Can reduce overall throughput

Decompression:
▶ More frequent (“Write Once, Read Many”) and on the critical path
▶ High impact on user-visible latency

16

Cost Model

How does compression impact perceived performance?

Compression:
▶ Usually infrequent and done in the background
▶ Can reduce overall throughput

Decompression:
▶ More frequent (“Write Once, Read Many”) and on the critical path
▶ High impact on user-visible latency

16

Cost Model

How does compression impact perceived performance?

Compression:
▶ Usually infrequent and done in the background
▶ Can reduce overall throughput

Decompression:
▶ More frequent (“Write Once, Read Many”) and on the critical path
▶ High impact on user-visible latency

16

Cost Model: Corollaries

1. Do compression in the background and in large batches
▶ Implement backpressure to avoid falling behind
▶ If backpressure reaches users, try a faster compressor

2. Be sensitive to decompression latency
▶ Hit the highest nail: other latency sources may be more important
▶ Experiment with block sizes and faster compression algorithms

17

Cost Model: Corollaries

1. Do compression in the background and in large batches
▶ Implement backpressure to avoid falling behind
▶ If backpressure reaches users, try a faster compressor

2. Be sensitive to decompression latency
▶ Hit the highest nail: other latency sources may be more important
▶ Experiment with block sizes and faster compression algorithms

17

Cost Model: Corollaries

1. Do compression in the background and in large batches
▶ Implement backpressure to avoid falling behind
▶ If backpressure reaches users, try a faster compressor

2. Be sensitive to decompression latency
▶ Hit the highest nail: other latency sources may be more important
▶ Experiment with block sizes and faster compression algorithms

17

How Compression Even Works

18

How Compression Even Works

All* compression algorithms, at their core, use a form of dictionary encoding:
▶ Write down a dictionary of “common phrases” with shorter names
▶ Encode the input stream by referencing the short names in the dictionary

*A Universal Algorithm for Sequential Data Compression, J. Ziv, A. Lempel 1977

abbabbabbcdcdcdcdabb => abb|abb|abb|cd|cd|cd|cd|abb

Symbol Phrase
x abb
y cd

, xxxyyyyx

To decompress: read the dictionary, use it to interpret the compressed stream.

19

How Compression Even Works

All* compression algorithms, at their core, use a form of dictionary encoding:
▶ Write down a dictionary of “common phrases” with shorter names
▶ Encode the input stream by referencing the short names in the dictionary

*A Universal Algorithm for Sequential Data Compression, J. Ziv, A. Lempel 1977

abbabbabbcdcdcdcdabb => abb|abb|abb|cd|cd|cd|cd|abb

Symbol Phrase
x abb
y cd

, xxxyyyyx

To decompress: read the dictionary, use it to interpret the compressed stream.

19

How Compression Even Works

All* compression algorithms, at their core, use a form of dictionary encoding:
▶ Write down a dictionary of “common phrases” with shorter names
▶ Encode the input stream by referencing the short names in the dictionary

*A Universal Algorithm for Sequential Data Compression, J. Ziv, A. Lempel 1977

abbabbabbcdcdcdcdabb => abb|abb|abb|cd|cd|cd|cd|abb

Symbol Phrase
x abb
y cd

, xxxyyyyx

To decompress: read the dictionary, use it to interpret the compressed stream.

19

How Compression Even Works

All* compression algorithms, at their core, use a form of dictionary encoding:
▶ Write down a dictionary of “common phrases” with shorter names
▶ Encode the input stream by referencing the short names in the dictionary

*A Universal Algorithm for Sequential Data Compression, J. Ziv, A. Lempel 1977

abbabbabbcdcdcdcdabb => abb|abb|abb|cd|cd|cd|cd|abb

Symbol Phrase
x abb
y cd

, xxxyyyyx

To decompress: read the dictionary, use it to interpret the compressed stream.

19

How Compression Even Works

All* compression algorithms, at their core, use a form of dictionary encoding:
▶ Write down a dictionary of “common phrases” with shorter names
▶ Encode the input stream by referencing the short names in the dictionary

*A Universal Algorithm for Sequential Data Compression, J. Ziv, A. Lempel 1977

abbabbabbcdcdcdcdabb => abb|abb|abb|cd|cd|cd|cd|abb

Symbol Phrase
x abb
y cd

, xxxyyyyx

To decompress: read the dictionary, use it to interpret the compressed stream.

19

How Compression Even Works

Most compressors have a dynamic dictionary which is modified (optimized) as
it compresses the input.

The dictionary takes up some space in the file header, so to be worthwhile, we
want to compress a lot of input with it at once.

20

How Compression Even Works

Most compressors have a dynamic dictionary which is modified (optimized) as
it compresses the input.

The dictionary takes up some space in the file header, so to be worthwhile, we
want to compress a lot of input with it at once.

20

How Compression Even Works

We cannot seek directly to an offset in the decompressed output because:

▶ We need to read the compressed stream to modify the dictionary
▶ We don’t know how much output any given chunk of input will produce

We also can’t update a compressed file without recompressing the whole thing.

21

How Compression Even Works

We cannot seek directly to an offset in the decompressed output because:
▶ We need to read the compressed stream to modify the dictionary

▶ We don’t know how much output any given chunk of input will produce

We also can’t update a compressed file without recompressing the whole thing.

21

How Compression Even Works

We cannot seek directly to an offset in the decompressed output because:
▶ We need to read the compressed stream to modify the dictionary
▶ We don’t know how much output any given chunk of input will produce

We also can’t update a compressed file without recompressing the whole thing.

21

How Compression Even Works

We cannot seek directly to an offset in the decompressed output because:
▶ We need to read the compressed stream to modify the dictionary
▶ We don’t know how much output any given chunk of input will produce

We also can’t update a compressed file without recompressing the whole thing.

21

How Compression Even Works

Systems that provide seeking in compressed data do so by dividing the input
into blocks, and compressing them individually.

▶ When writing, recompress the whole block being written
(but not the whole data set)

▶ When reading, decompress the whole block being read
▶ Overall compression ratio depends on the size of the blocks

22

How Compression Even Works

Systems that provide seeking in compressed data do so by dividing the input
into blocks, and compressing them individually.

▶ When writing, recompress the whole block being written
(but not the whole data set)

▶ When reading, decompress the whole block being read
▶ Overall compression ratio depends on the size of the blocks

22

How Compression Even Works

Systems that provide seeking in compressed data do so by dividing the input
into blocks, and compressing them individually.

▶ When writing, recompress the whole block being written
(but not the whole data set)

▶ When reading, decompress the whole block being read

▶ Overall compression ratio depends on the size of the blocks

22

How Compression Even Works

Systems that provide seeking in compressed data do so by dividing the input
into blocks, and compressing them individually.

▶ When writing, recompress the whole block being written
(but not the whole data set)

▶ When reading, decompress the whole block being read
▶ Overall compression ratio depends on the size of the blocks

22

Block Sizes

23

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:
▶ Compression throughput decreases
▶ Compression and decompression memory usage increases
▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:
▶ Compression throughput decreases
▶ Compression and decompression memory usage increases
▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:

▶ Compression throughput decreases
▶ Compression and decompression memory usage increases
▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:
▶ Compression throughput decreases

▶ Compression and decompression memory usage increases
▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:
▶ Compression throughput decreases
▶ Compression and decompression memory usage increases

▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

Compression algorithms are pattern finders. Give them more data to search in,
and they find more patterns.

Compressors use block sizes to limit their runtime and memory usage.

As block size increases:
▶ Compression throughput decreases
▶ Compression and decompression memory usage increases
▶ Decompression throughput may increase if disk throughput increases

24

Block Sizes

 1

 2

 3

 4

 5

 6

 7

 8

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
om

pr
es

si
on

 R
at

io

Block Size

Compression Ratio vs. Block Size (higher is better)

btrfs

InnoDB
PostgreSQL

WiredTiger
Vertica

Sybase IQ

RocksDB

TokuDB/TokuMX
Cassandra

zfs
The compression ratio sweet
spot is∼128k, for gzip on
this data set.

Most systems use small
blocks∼8k, to reduce
decompression latency.

25

Block Sizes

 1

 2

 3

 4

 5

 6

 7

 8

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
om

pr
es

si
on

 R
at

io

Block Size

Compression Ratio vs. Block Size (higher is better)

btrfs

InnoDB
PostgreSQL

WiredTiger
Vertica

Sybase IQ

RocksDB

TokuDB/TokuMX
Cassandra

zfs

The compression ratio sweet
spot is∼128k, for gzip on
this data set.

Most systems use small
blocks∼8k, to reduce
decompression latency.

25

Block Sizes

 1

 2

 3

 4

 5

 6

 7

 8

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
om

pr
es

si
on

 R
at

io

Block Size

Compression Ratio vs. Block Size (higher is better)

btrfs

InnoDB
PostgreSQL

WiredTiger
Vertica

Sybase IQ

RocksDB

TokuDB/TokuMX
Cassandra

zfs

The compression ratio sweet
spot is∼128k, for gzip on
this data set.

Most systems use small
blocks∼8k, to reduce
decompression latency.

25

Block Sizes

 1

 2

 3

 4

 5

 6

 7

 8

512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
om

pr
es

si
on

 R
at

io

Block Size

Compression Ratio vs. Block Size (higher is better)

btrfs

InnoDB
PostgreSQL

WiredTiger
Vertica

Sybase IQ

RocksDB

TokuDB/TokuMX
Cassandra

zfs
The compression ratio sweet
spot is∼128k, for gzip on
this data set.

Most systems use small
blocks∼8k, to reduce
decompression latency.

25

Fragmentation

Another corollary of compressing in blocks is fragmentation.

Blocks need to be allocated locations on disk. As the data grows, shrinks, and
moves around, these locations (and for some systems, allocation sizes) change.

26

Fragmentation

Another corollary of compressing in blocks is fragmentation.

Blocks need to be allocated locations on disk. As the data grows, shrinks, and
moves around, these locations (and for some systems, allocation sizes) change.

26

Fragmentation

27

Fragmentation

Fragmentation hurts you in two ways:

1. Fragmented files occupy more effective space than defragmented ones
2. Fragmentation degrades range query throughput by reducing data locality

For some systems, the overall compression ratio will be reduced once
fragmentation develops.

28

Fragmentation

Fragmentation hurts you in two ways:
1. Fragmented files occupy more effective space than defragmented ones

2. Fragmentation degrades range query throughput by reducing data locality

For some systems, the overall compression ratio will be reduced once
fragmentation develops.

28

Fragmentation

Fragmentation hurts you in two ways:
1. Fragmented files occupy more effective space than defragmented ones
2. Fragmentation degrades range query throughput by reducing data locality

For some systems, the overall compression ratio will be reduced once
fragmentation develops.

28

Fragmentation

Fragmentation hurts you in two ways:
1. Fragmented files occupy more effective space than defragmented ones
2. Fragmentation degrades range query throughput by reducing data locality

For some systems, the overall compression ratio will be reduced once
fragmentation develops.

28

Entropy

29

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy

Not all data compresses equally!

Information Theory* can tell us how much real information is present in a
set of data (“bits of entropy”).

*A Mathematical Theory of Communication, C. E. Shannon, 1948

A general-purpose, lossless compression algorithm can’t hope to compress
data smaller than that.

If it could, it would have to produce the same compressed output for multiple
inputs, which would mean it isn’t lossless.

High entropy data is highly uncompressible.
Low entropy data is easily compressed.

30

Entropy: Experiment

Built 8 data sources (∼50k each):
1. Random bytes
2. Sequential numbers, encoded as ASCII decimals
3. All zeroes
4. The beginning of The Iliad
5. 1000 randomWikipedia URLs
6. 1000 randomWikipedia URLs, sorted
7. RAW image (CR2)
8. JPEG-compressed image

31

Entropy: Experiment

Built 8 data sources (∼50k each):

1. Random bytes
2. Sequential numbers, encoded as ASCII decimals
3. All zeroes
4. The beginning of The Iliad
5. 1000 randomWikipedia URLs
6. 1000 randomWikipedia URLs, sorted
7. RAW image (CR2)
8. JPEG-compressed image

31

Entropy: Experiment

Built 8 data sources (∼50k each):
1. Random bytes
2. Sequential numbers, encoded as ASCII decimals
3. All zeroes
4. The beginning of The Iliad
5. 1000 randomWikipedia URLs
6. 1000 randomWikipedia URLs, sorted
7. RAW image (CR2)
8. JPEG-compressed image

31

Entropy: Experiment

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

rand image-jpg seq-nums iliad-head urls urls-sorted image-raw zeroes

C
om

pr
es

si
on

 R
at

io
 (

hi
gh

er
 is

 b
et

te
r)

Data source

gzip
bz2

lzma
lzo
lz4

zstd

160x to 2000x
JPEG-compressed
data has high

entropy, doesn’t
compress well

32

Entropy: Experiment

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

rand image-jpg seq-nums iliad-head urls urls-sorted image-raw zeroes

C
om

pr
es

si
on

 R
at

io
 (

hi
gh

er
 is

 b
et

te
r)

Data source

gzip
bz2

lzma
lzo
lz4

zstd
160x to 2000x

JPEG-compressed
data has high

entropy, doesn’t
compress well

32

Entropy: Experiment

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

rand image-jpg seq-nums iliad-head urls urls-sorted image-raw zeroes

C
om

pr
es

si
on

 R
at

io
 (

hi
gh

er
 is

 b
et

te
r)

Data source

gzip
bz2

lzma
lzo
lz4

zstd
160x to 2000x

JPEG-compressed
data has high

entropy, doesn’t
compress well

32

Entropy

Homogeneous data has lower entropy than heterogeneous data.

▶ Integers compress better than documents with complex interal structure

Column stores have a compression advantage over row stores.

33

Entropy

Homogeneous data has lower entropy than heterogeneous data.
▶ Integers compress better than documents with complex interal structure

Column stores have a compression advantage over row stores.

33

Entropy

Homogeneous data has lower entropy than heterogeneous data.
▶ Integers compress better than documents with complex interal structure

Column stores have a compression advantage over row stores.

33

Entropy

Know your data!
Don’t waste your time compressing JPEG blobs

Some compressors are fantastic in specific data domains
(VLQ, delta coding, JPEG, MP3, …)

(But 95% of the time, gzip is fine)

34

Entropy

Know your data!
Don’t waste your time compressing JPEG blobs

Some compressors are fantastic in specific data domains
(VLQ, delta coding, JPEG, MP3, …)

(But 95% of the time, gzip is fine)

34

Entropy

Know your data!
Don’t waste your time compressing JPEG blobs

Some compressors are fantastic in specific data domains
(VLQ, delta coding, JPEG, MP3, …)

(But 95% of the time, gzip is fine)

34

Before we use compression, we need to understand the
costs and benefits to our application.

35

Benchmarking

36

Benchmarking

When designing a compression benchmark, you should consider:

▶ Execution
▶ Measurement
▶ Presentation

37

Benchmarking

When designing a compression benchmark, you should consider:
▶ Execution

▶ Measurement
▶ Presentation

37

Benchmarking

When designing a compression benchmark, you should consider:
▶ Execution
▶ Measurement

▶ Presentation

37

Benchmarking

When designing a compression benchmark, you should consider:
▶ Execution
▶ Measurement
▶ Presentation

37

Benchmarking: Execution

Main Question
Is the workload representative of a real-world use-case?

38

Benchmarking: Execution

1. Sample real data if you can get it.

If not, generate plausibly realistic data:
▶ Zeroes: bad
▶ Random: bad
▶ 25% random and 75% zeroes: meh
▶ JSON blobs: good

39

Benchmarking: Execution

1. Sample real data if you can get it.

If not, generate plausibly realistic data:

▶ Zeroes: bad
▶ Random: bad
▶ 25% random and 75% zeroes: meh
▶ JSON blobs: good

39

Benchmarking: Execution

1. Sample real data if you can get it.

If not, generate plausibly realistic data:
▶ Zeroes: bad
▶ Random: bad
▶ 25% random and 75% zeroes: meh
▶ JSON blobs: good

39

Benchmarking: Execution

2. Use a realistic read/insert/update mixture:

▶ Most applications are read-heavy
▶ Favors fast decompressors

40

Benchmarking: Execution

2. Use a realistic read/insert/update mixture:
▶ Most applications are read-heavy
▶ Favors fast decompressors

40

Benchmarking: Execution

3. Use a realistic insert/update distribution:

▶ Most applications don’t write uniformly over the keyspace
▶ Zipfian or Pareto (or sometimes sequential, or nearly) distributions are more
realistic, and cache-friendlier

▶ Vadim wrote a sysbench workload generator that uses a Zipfian distribution:
http://j.mp/sysbench-zipf

41

http://j.mp/sysbench-zipf

Benchmarking: Execution

3. Use a realistic insert/update distribution:
▶ Most applications don’t write uniformly over the keyspace

▶ Zipfian or Pareto (or sometimes sequential, or nearly) distributions are more
realistic, and cache-friendlier

▶ Vadim wrote a sysbench workload generator that uses a Zipfian distribution:
http://j.mp/sysbench-zipf

41

http://j.mp/sysbench-zipf

Benchmarking: Execution

3. Use a realistic insert/update distribution:
▶ Most applications don’t write uniformly over the keyspace
▶ Zipfian or Pareto (or sometimes sequential, or nearly) distributions are more
realistic, and cache-friendlier

▶ Vadim wrote a sysbench workload generator that uses a Zipfian distribution:
http://j.mp/sysbench-zipf

41

http://j.mp/sysbench-zipf

Benchmarking: Execution

3. Use a realistic insert/update distribution:
▶ Most applications don’t write uniformly over the keyspace
▶ Zipfian or Pareto (or sometimes sequential, or nearly) distributions are more
realistic, and cache-friendlier

▶ Vadim wrote a sysbench workload generator that uses a Zipfian distribution:
http://j.mp/sysbench-zipf

41

http://j.mp/sysbench-zipf

Benchmarking: Execution

4. To measure latency, throttle your workload.

▶ Full-throughput workloads will induce artificial latency spikes (fsyncs, GC)

To measuremax throughput, run at full speed.

You should do both.

42

Benchmarking: Execution

4. To measure latency, throttle your workload.
▶ Full-throughput workloads will induce artificial latency spikes (fsyncs, GC)

To measuremax throughput, run at full speed.

You should do both.

42

Benchmarking: Execution

4. To measure latency, throttle your workload.
▶ Full-throughput workloads will induce artificial latency spikes (fsyncs, GC)

To measuremax throughput, run at full speed.

You should do both.

42

Benchmarking: Execution

4. To measure latency, throttle your workload.
▶ Full-throughput workloads will induce artificial latency spikes (fsyncs, GC)

To measuremax throughput, run at full speed.

You should do both.

42

Benchmarking: Execution

5. Run for a long time. Lots of important properties don’t become visible
immediately (e.g. fragmentation), and you need to understand them.

Your application is hopefully going to run for months or years. You don’t
want to be surprised by degradation after you think everything’s stable.

43

Benchmarking: Execution

5. Run for a long time. Lots of important properties don’t become visible
immediately (e.g. fragmentation), and you need to understand them.

Your application is hopefully going to run for months or years. You don’t
want to be surprised by degradation after you think everything’s stable.

43

Benchmarking: Execution

6. Parameterize your workload:

▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture

▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution

▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads

▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size

▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling

▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration

▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

6. Parameterize your workload:
▶ Read/insert/update mixture
▶ Write distribution
▶ Number of threads
▶ Data size
▶ Throttling
▶ Duration
▶ System configuration (cache size, isolation levels, log commit)

You are going to want to explore these parameter spaces. Save yourself
the pain later and think about parameterization up front.

44

Benchmarking: Execution

Great example: https://github.com/ParsePlatform/flashback

Captures a MongoDB workload with profiling, then replays operations either at
their original timestamps, or at full speed.

45

https://github.com/ParsePlatform/flashback

Benchmarking: Measurement

46

Benchmarking: Measurement

46

Benchmarking: Measurement

Application metrics:

▶ Throughput
▶ Latency
▶ Aborted/retried transactions

Instrument your application so you know which operations are expensive.

47

Benchmarking: Measurement

Application metrics:
▶ Throughput
▶ Latency
▶ Aborted/retried transactions

Instrument your application so you know which operations are expensive.

47

Benchmarking: Measurement

Application metrics:
▶ Throughput
▶ Latency
▶ Aborted/retried transactions

Instrument your application so you know which operations are expensive.

47

Benchmarking: Measurement

System metrics:

▶ CPU
▶ Memory (RSS)
▶ I/O
▶ Network
▶ Actual storage usage (du)

perf(1), iostat(1), dstat(1), oprofile(1), collectd(1), Datadog, Librato, …

48

Benchmarking: Measurement

System metrics:
▶ CPU
▶ Memory (RSS)
▶ I/O
▶ Network
▶ Actual storage usage (du)

perf(1), iostat(1), dstat(1), oprofile(1), collectd(1), Datadog, Librato, …

48

Benchmarking: Measurement

System metrics:
▶ CPU
▶ Memory (RSS)
▶ I/O
▶ Network
▶ Actual storage usage (du)

perf(1), iostat(1), dstat(1), oprofile(1), collectd(1), Datadog, Librato, …

48

Benchmarking: Measurement

Database/filesystem metrics (product-specific):

▶ Cache hits/misses
▶ Replication lag
▶ Checkpoint lag

Talk to your storage vendor about what’s important.

49

Benchmarking: Measurement

Database/filesystem metrics (product-specific):
▶ Cache hits/misses
▶ Replication lag
▶ Checkpoint lag

Talk to your storage vendor about what’s important.

49

Benchmarking: Measurement

Database/filesystem metrics (product-specific):
▶ Cache hits/misses
▶ Replication lag
▶ Checkpoint lag

Talk to your storage vendor about what’s important.

49

Benchmarking: Presentation

1. Describe the workload, and make a case for why it’s realistic
2. Choose key metrics that reflect the benefits of compression (e.g. users

stored per TB) as well as the costs (e.g. operation latency)
3. Demonstrate which parameter choices influence the costs and

benefits you think are important
4. Explain which parameters have little or no effect on your metrics
5. Explain how much of your measurement is overhead.
6. If you show charts, normalize your data. Only present important

differences.

50

Benchmarking: Presentation

1. Describe the workload, and make a case for why it’s realistic

2. Choose key metrics that reflect the benefits of compression (e.g. users
stored per TB) as well as the costs (e.g. operation latency)

3. Demonstrate which parameter choices influence the costs and
benefits you think are important

4. Explain which parameters have little or no effect on your metrics
5. Explain how much of your measurement is overhead.
6. If you show charts, normalize your data. Only present important

differences.

50

Benchmarking: Presentation

1. Describe the workload, and make a case for why it’s realistic
2. Choose key metrics that reflect the benefits of compression (e.g. users

stored per TB) as well as the costs (e.g. operation latency)

3. Demonstrate which parameter choices influence the costs and
benefits you think are important

4. Explain which parameters have little or no effect on your metrics
5. Explain how much of your measurement is overhead.
6. If you show charts, normalize your data. Only present important

differences.

50

Benchmarking: Presentation

1. Describe the workload, and make a case for why it’s realistic
2. Choose key metrics that reflect the benefits of compression (e.g. users

stored per TB) as well as the costs (e.g. operation latency)
3. Demonstrate which parameter choices influence the costs and

benefits you think are important

4. Explain which parameters have little or no effect on your metrics
5. Explain how much of your measurement is overhead.
6. If you show charts, normalize your data. Only present important

differences.

50

Benchmarking: Presentation

1. Describe the workload, and make a case for why it’s realistic
2. Choose key metrics that reflect the benefits of compression (e.g. users

stored per TB) as well as the costs (e.g. operation latency)
3. Demonstrate which parameter choices influence the costs and

benefits you think are important
4. Explain which parameters have little or no effect on your metrics
5. Explain how much of your measurement is overhead.
6. If you show charts, normalize your data. Only present important

differences.

50

Review

51

Review

Say “5x compression”

52

Review

Compression is slower than decompression, but
decompression ismore frequent

53

Review

Large blocks compress better

54

Review

Fragmentation degrades
effective compression over time

55

Review

High entropy data is less compressible

56

Review

Benchmark realistic workloads over a long period

57

Review

Present responsibly
(and distrust benchmarketers who don’t)

58

Thanks!

▶ Tim and Mark Callaghan for being exemplar benchmarkers
(http://acmebenchmarking.com and http://smalldatum.blogspot.com)

▶ Bohu Tang for introducing me to zstd
▶ Andrew Bolin, Corey Milloy, Effie Baram, Li Jin, Wil Yegelwel for making
this talk better

▶ Tokutek engineering
▶ Percona (they’re also good benchmarkers)

59

http://acmebenchmarking.com
http://smalldatum.blogspot.com

Questions?

Leif Walsh
leif.walsh@gmail.com

@leifwalsh

60

This document is being distributed for informational and educational purposes only and is not an offer to sell or the solicitation of an offer to buy

any securities or other instruments. The information contained herein is not intended to provide, and should not be relied upon for investment

advice. The views expressed herein are not necessarily the views of Two Sigma Investments, LP or any of its affiliates (collectively, “Two Sigma”).

Such views reflect significant assumptions and subjective of the author(s) of the document and are subject to change without notice. The

document may employ data derived from third-party sources. No representation is made as to the accuracy of such information and the use of

such information in no way implies an endorsement of the source of such information or its validity.

The copyrights and/or trademarks in some of the images, logos or other material used herein may be owned by entities other than Two Sigma. If

so, such copyrights and/or trademarks are most likely owned by the entity that created the material and are used purely for identification and

comment as fair use under international copyright and/or trademark laws. Use of such image, copyright or trademark does not imply any

association with such organization (or endorsement of such organization) by Two Sigma, nor vice versa.

