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“Have you found it, Wiggins?”
[Sherlock Holmes in A Study in Scarlet]
ABSTRACT

Detecting new information and events in a dynamic network
by probing individual nodes has many practical applications:
discovering new webpages, analyzing influence properties in
network, and detecting failure propagation in electronic cir-
cuits or infections in public drinkable water systems. In
practice, it is infeasible for anyone but the owner of the
network (if existent) to monitor all nodes at all times. In
this work we study the constrained setting when the ob-
server can only probe a small set of nodes at each time step
to check whether new pieces of information (items) have
reached those nodes.

We formally define the problem through an infinite time
generating process that places new items in subsets of nodes
according to an unknown probability distribution. Items
have an exponentially decaying novelty, modeling their de-
creasing value. The observer uses a probing schedule (i.e., a
probability distribution over the set of nodes) to choose, at
each time step, a small set of nodes to check for new items.
The goal is to compute a schedule that minimizes the aver-
age novelty of undetected items. We present an algorithm,
WIGGINS, to compute the optimal schedule through convex
optimization, and then show how it can be adapted when
the parameters of the problem must be learned or change
over time. We also present a scalable variant of WIGGINS
for the MapReduce framework. The results of our experi-
mental evaluation on real social networks demonstrate the
practicality of our approach.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory— Graph al-
gorithms; H.2.8 [Database Management]: Database Ap-
plications—Data mining
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1. INTRODUCTION

Many applications require the detection of events in a net-
work as soon as they happen or shortly thereafter, as the
value of the information obtained by detecting the events
decays rapidly as time passes. For example, an emerging
trend in algorithmic stock trading is the use of automatic
search through the Web and social networks for pieces of in-
formation that can be used in trading decisions before they
appear in the more popular news sites [10] 14} 24 28]. Sim-
ilarly, intelligence, business and politics analysts are scan-
ning online sources for new information or rumors. While
new items are often reblogged, retweeted, and posted on a
number of sites, it is sufficient to find an item once, as fast as
possible, before it loses its relevance or freshness. There is
no benefit in seeing multiple copies of the same news item or
rumor. This is also the case when monitoring for intrusions,
infections, or defects in, respectively, a computer network, a
public water system, or a large electronic circuit.

Monitoring for new events or information is a fundamental
search and detection problem in a distributed data setting,
not limited to social networks or graph analysis. In this
setting, the data is distributed among a large number of
nodes, and new items appear in individual nodes (for exam-
ple, as the products of processing the data available locally
at the node), and may propagate (being copied) to neigh-
boring nodes on a physical or a virtual network. The goal
is to detect at least one copy of each new item as soon as
possible. The search application can access any node in the
system, but it can only probe (i.e., check for new items on)
a few nodes at a time. To minimize the time to find new
items, the search application needs to optimize the schedule
of probing nodes, taking into account (i) the distribution
of copies of items among the nodes (to choose which nodes
to probe), and (ii) the decay of the items’ nowvelty (or rel-
evance/freshness) over time (to focus the search on most
relevant items). The main challenge is how to devise a good
probing schedule in the absence of prior knowledge about
the generation and distribution of items in the network.

Contributions. In this work we study the novel problem of
computing an optimal node probing schedule for detecting
new items in a network under resource scarceness, i.e., when
only a few nodes can be probed at a time. Our contributions
to the study of this problem are as follows:

e We formalize a generic process that describes the cre-
ation and distribution of information in a network, and
define the computational task of learning this process
by probing the nodes in the network according to a



schedule. The process and task are parametrized by
the resource limitations of the observer and the de-
cay rate of the novelty of items. We introduce a cost
measure to compare different schedules: the cost of a
schedule is the limit of the average expected novelty
of uncaught items at each time step. On the basis of
these concepts, we formally define the Optimal Probing
Schedule Problem, which requires to find the schedule
with minimum cost.

e We conduct a theoretical study of the cost of a sched-
ule, showing that it can be computed explicitly and
that it is a convex function over the space of schedules.
We then introduce WIGGINSEl an algorithm to compute
the optimal schedule by solving a constrained convex
optimization problem through the use of an iterative
method based on Lagrange multipliers.

e We discuss variants of WIGGINS for the realistic sit-
uation where the parameters of the process needs to
be learned or can change over time. We show how to
compute a schedule which is (probabilistically) guar-
anteed to have a cost very close to the optimal by only
observing the generating process for a limited amount
of time. We also present a MapReduce adaptation of
WIGGINS to handle very large networks.

e Finally, we conduct an extensive experimental evalua-
tion of WIGGINS and its variants, comparing the per-
formances of the schedules it computes with natural
baselines, and showing how it performs extremely well
in practice on real social networks when using well-
established models for generating new items (e.g., the
independence cascade model [I7]).

To the best of our knowledge, the problem we study is
novel and we are the first to devise an algorithm to com-
pute an optimal schedule, both when the generating process
parameters are known and when they need to be learned.
Paper Organization. In Sect. 2| we give the fundamen-
tal definitions, and formally introduce the settings and the
problem. We discuss related works in Sect. [3] In Sect. [ we
describe our algorithm WIGGINS and its variants. The results
of our experimental evaluation are presented in Sect. [} We
conclude by outlining directions for future work in Sect. [6]

2. PROBLEM DEFINITION

In this section we formally introduce the problem and de-
fine our goal.

Let G = (V, E) be a graph with |V| = n nodes. W.lo.g.
we let V = [n]. Let F C 2" be a collection of subsets of
V, i.e., a collection of sets of nodes. Let m be a function
from F to [0,1] (not necessarily a probability distribution).
We model the generation and diffusion of information in the
network by defining a generating process I' = (F, 7). I'is a
infinite discrete-time process which, at each time step ¢, gen-
erates a collection of sets Z; C F such that each set S € F is
included in Z; with probability 7(S), independent of ¢ and
of other sets generated at time ¢’ < t. For any t and any
S € T, the ordered pair (t, S) represents an item - a piece of
information that was generated at time ¢ and reached instan-
taneously the nodes in S. We choose to model the diffusion

In the Sherlock Holmes novel A study in scarlet by A. Co-
nan Doyle, Wiggins is the leader of the “Baker Street Ir-
regulars”, a band of street urchins employed by Holmes as
intelligence agents.

process as instantaneous because this abstraction accurately
models the view of an outside resource-limited observer that
does not have the resources to monitor simultaneously all the
nodes in the network at the fine time granularity needed to
observe the different stages of the diffusion process.
Probing and schedule. The observer can only monitor
the network by probing nodes. Formally, by probing a node
v € V at time t, we mean obtaining the set I(¢,v) of items
(t',S) such that t' <t and v € SEI

I(t,v) ={(t,8) : t <t,S€Ty,veS}.
Let Uy be the union of the sets 7,/ generated by I' at any
time ¢’ < ¢, and so I(¢,v) C Us.

We model the resource limitedness of the observer through
a constant, user-specified, parameter ¢ € N, representing the
maximum number of nodes that can be probed at any time,
where probing a node v returns the value I(t,v).

The observer chooses the ¢ nodes to probe by following a
schedule. In this work we focus on memoryless schedules,
i.e., the choice of nodes to probe at time ¢ is independent
from the choice of nodes probed at any time ¢ < t. More
precisely, a probing c-schedule p is a probability distribution
on V. At each time ¢, the observer chooses a set P; of ¢ nodes
to probe, such that P; is obtained through random sampling
of V' without replacement according to p, independently from
P, from t' < t. Memoryless schedules are simple, easy to
store, and fast to implement.

Caught items, uncaught items, and novelty. We say
that an item (¢',S) is caught at time t > ' iff

1. a node v € S is probed at time ¢; and
2. no node in S was probed in the interval [t', ¢ — 1].

Let C; be the set of items caught by the observer at any
time ¢’ < ¢. We have Cy C U;. Let Ny = Uy \ C; be the set
of uncaught items at time t, i.e., items that were generated
at any time ¢’ < t and have not been caught yet at time ¢.
For any item (t',S) € Ny, we define the §-novelty of (t',5)
at time t as

fo(t,t',S) = 0",

where 0 € (0,1) is a user-specified parameter modeling how
fast the value of an item decreases with time if uncaught.
Intuitively, pieces of information (e.g., rumors) have high
value if caught almost as soon as they have appeared in the
network, but their value decreases fast (i.e., exponentially)
as more time passes before being caught, to the point of
having no value in the limit.

Load of the system and cost of a schedule. The set
N, of uncaught items at time ¢ imposes a 6-load, Lo(t), on
the graph at time t, defined as the sum of the #-novelty at
time t of the items in N;:

> fott,S) .

(t',S)EN

Lo (t) =

The quantity Le(t) is a random variable, depending both
on I' and on the probing schedule p, and as such it has an
expectation E[Lg(¢)] w.r.t. all the randomness in the system.

2The set S appears in the notation for an item only for
clarity of presentation: we are not assuming that when we
probe a node and find an item (¢, S) we obtain information
about S.



The 0-cost of a schedule p is defined as the limit, for ¢ — oo,
of the average expected load of the system:

costg(p) := lim — Z E[Lo(t

t—oo t
t/'<t

zliml E

t—oo t

Z fo(t' t",5)

t/' <t (t",S)EN

Intuitively, the load at each time indicates the amount of
novelty we did not catch at that time, and the cost function
measures the average of such loss over time. The limit above
always exists (Lemma [1)).

We now have all the necessary ingredients to formally de-
fine the problem of interest in this work.
Problem definition. Let G = (V, E) be a graph and I =
(F,m) be a generating process on G. Let ¢ € N and 6 €
(0,1). The (0, c)-Optimal Probing Schedule Problem ((6,c)-
OPSP) requires to find the optimal c-schedule p*, i.e., the
schedule with minimum 6-cost over the set S, of c-schedules:

p* = argmin{costy(p),p € Sc} .
p

Thus, the goal is to design a c-schedule that discovers the
maximum number of items weighted by their novelty value
(which correspond to those generated most recently). The
parameter 6 controls how fast the novelty of an item decays,
and influences the choices of a schedule. When 0 is closed to
0, items are relevant only for a few steps and the schedule
must focus on the most recently generated items, catching
them as soon as they are generated (or at most shortly there-
after). At the other extreme (6 ~ 1), an optimal schedule
must maximizes the total number of discovered items, as
their novelty decays very slowly.

Viewing the items as “information” disseminated in the
network, an ideal schedule assigns higher probing probabil-
ity to nodes that act as information hubs, i.e., nodes that
receive a large number of items. Thus, an optimal schedule
p*, identifies information hubs among the nodes. This task
(finding information hubs) can be seen as the complement
of the influence mazimization problem [17),[18]. In the influ-
ence maximization problem we look for a set of nodes that
generate information that reach most nodes. In the informa-
tion hubs problem, we are interested in a set of nodes that
recetve the most of information, thus the most informative
nodes for an observer.

In the following sections, we may drop the specification of
the parameters from 6-novelty, 6-cost, 6-load, and c-schedule,
and from their respective notation, as the parameters will
be clear from the context.

3. RELATED WORK

The novel problem we focus on in this work generalizes
and complements a number of problems studied in the lit-
erature.

The “Battle of Water Sensor Network” challenge [31] mo-
tivated a number of works on outbreak detection: the goal
is to optimally place static or moving sensors in water net-
works to detect contamination [I3],[20,[25]. The optimization
can be done w.r.t. a number of objectives, such as maximiz-
ing the probability of detection, minimizing the detection
time, or minimizing the size of the subnetwork affected by
the phenomena [25]. A related work [I] considered sensors

that are sent along fixed paths in the network with the goal
of gathering sufficient information to locate possible con-
taminations. Early detection of contagious outbreaks by
monitoring the neighborhood (friends) of a randomly chosen
node (individual) was studied by Christakis and Fowler [7].
Krause et al. [2I] present efficient schedules for minimizing
energy consumption in battery operated sensors, while other
works analyzed distributed solutions with limited communi-
cation capacities and costs [I1}[1922]. In contrast, our work
is geared to detection in huge but virtual networks such as
the Web or social networks embedded in the Internet, where
it is possible to “sense” or probe (almost) any node at ap-
proximately the same cost. Still only a restricted number of
nodes can be probed at each steps but the optimization of
the probing sequence is over a much larger domain, and the
goal is to identify the outbreaks (items) regardless of their
size and solely by considering their interest value.

Our methods complement the work on FEmerging Topic
Detection where the goal is to identify emerging topics in
a social network, assuming full access to the stream of all
postings. Providers, such as Twitter or Facebook, have an
immediate access to all tweets or postings as they are sub-
mitted to their servers [4] 27]. Outside observers need an
efficient mechanism to monitor changes, such as the meth-
ods developed in this work.

Web-crawling is another research area that study how to
obtain the most recent snapshots of the web. However, it
differs from our model in two key points: our model allows
items to propagate their copies, and they will be caught
if any of their copies is discovered (where snapshots of a
webpage belong to that page only), and all the generated
items should be discovered (not just the recent ones) [ [34].

The goal of the News and Feed Aggregation problem is
to capture updates in news websites (e.g. by RSS feeds) [3]
15), [30%, [32]. Our model differs from that setting in that we
consider copies of the same news in different web sites as
equivalent and therefore are only interested in discovering
one of the copies.

4. THE WIGGINS ALGORITHM

In this section we present the algorithm WIGGINS (and its
variants) for solving the Optimal Probing Schedule Problem
(0, ¢)-OPSP for generating process I' = (F,m) on a graph
G=(V,E).

We start by assuming that we have complete knowledge of
I', i.e., we know F and 7. This strong assumption allows us
to study the theoretical properties of the cost function and
motivates the design of our algorithm, WIGGINS, to compute
an optimal schedule. We then remove the assumption and
show how we can extend WIGGINS to only use a collection
of observations from I'. Then we discuss how to recalibrate
our algorithms when the parameters of the process (e.g., ™
or F) change over time. Finally, we show an algorithm for
the MapReduce framework that allows us to scale to large
networks.

4.1 Computing the Optimal Schedule

We first conduct a theoretical analysis of the cost func-
tion costg, and then use the results to develop WIGGINS, our
algorithm to compute the optimal c-schedule (i.e., solve the
(6, c)-OPSP).



4.1.1 Analysis of the cost function

Assume for now that we know I', i.e., we have complete
knowledge of F and w. Under this assumption, we can ex-
actly compute the #-cost of a c-schedule.

LEMMA 1. Let p = (p1,...,pn) be a c-schedule. Then

t

cos = lim 1 = %
to(p) : Lmtt,ZOE[Le(t )] 562;1_9(1—;:(5))0’

1)
where p(S) = ZUES Puv.
PRrROOF. Let t be a time step, and consider the quantity
E[L¢(t)]. By definition we have

ElLo®) =E| Y  fo(t,t',S)| =E

(t',S)ENL

Z etft'

(t',S)EN

where N, is the set of uncaught items at time ¢. Let now,
for any t' < t, N;y C N; be the set of uncaught items in
the form (¢',.S). Then we can write

ElLo(t) =B |> > o7

t’=0 (t/,S)ENt)t/

Define now, for each S € F, the random variable Xg . ;

which takes the value §°~" if (t',8) € Ny v, and 0 otherwise.
Using the linearity of expectation, we can write:

E[Lo(t) = Y > E[Xs,t,1]

SeF t'=0
t
=Y > 0 Pe(Xsr =0 . (2)
SeF t'=0

The r.v. Xg 4 takes value 0! if and only if the follow-
ing two events E1 and E2 both take place:

e [;: the set S € F belongs to Zy/, i.e., is generated by
I at time t';

e F5: the item (¢',S) is uncaught at time ¢. This is
equivalent to say that no node v € S was probed in
the time interval [t', ¢].

We have Pr(E;) = n(S), and
Pr(Es) = (1 - p(9)"~") .

The events F1 and Es are independent, as the process of
probing the nodes is independent from the process of gener-
ating items, therefore, we have

Pr(Xs.y = 0"") = Pr(E)) Pr(E2) = n(S)(1—p(S))**) .

We can plug this quantity in the rightmost term of and
write

Jim BlLo(t)) = Jlim 37 36" m(S)(1 - p(s)
SeFt'=0

lim Y w(S) (01— p(S))"
SeF t/=0

. ()
R o ¥

SeF

where we used the fact that 8(1 — p(S))® < 1. We just
showed that the sequence (E[Lg(t)])ten converges as t — 0.
Therefore, its Cesaro mean, i.e., lim; o0 T Zi/:o E[Lg(t)],
equals to its limit [12] Sect. 5.4] and we have

costa(p) = lim %ZE[Lg(t)] — lim E[Lo(t)]

t— o0

_ ()
=2 1-6(1—p(S))°

O

We now show that costg(p), as expressed by the r.h.s. of
is a convex function over its domain S., the set of all pos-
sible c-schedules. We then use this result to show how to
compute an optimal schedule.

THEOREM 1. The cost function costg(p) is a convex func-
tion over Se..

Proor. For any S € F, let
1
fs(p) = —F———ae -
1—0(1—p(5))°

The function costg(p) is a linear combination of fs(p)’s with
positive coefficients. Hence to show that costy(p) is convex
it is sufficient to show that, for any S € F, fs(p) is convex.

We start by showing that gs(p) = (1 — p(S))° is convex.

This is due to the fact that its Hessian matrix is positive
semidefinite [2]:

apg ~s(p) = { fe(e = 1)(1 = p(S)*

Let vs be a n x 1 vector in R” such that its i-th coordinate
is [c(c -1 - p(é‘))“ﬂl/2 if ¢ € S, and 0 otherwise. We
can write the Hessian matrix of gs as

VQgS = VS *VST7

i,j €S
otherwise

and thus, V2gs is positive semidefinite matrix and g is con-
vex. From here, we have that 1 — gs is a concave function.
Since fs(p) = #S(p) and the function h(z) = 1 is convex
and non-increasing, then fg is a convex function. [

If for every v € V, S = {v} belongs to F, then the function
gs in the above proof is strictly convex, and so is fs.
We then have the following corollary of Thm.

COROLLARY 1. Any schedule p with locally minimum cost
is an optimal schedule (i.e., it has global minimum cost).
Furthermore, if for every v € V., {v} belongs to F, the opti-
mal schedule is unique.

4.1.2 The Algorithm

Corollaryimplies that one can compute an optimal c—schedule
p* (i.e., solve the (6, c)-OPSP) by solving the unconstrained
minimization of costy over the set S. of all c-schedules, or
equivalently by solving the following constrained minimiza-
tion problem on R":

min costy(p)

pER™
sz‘ =1 (4)
i=1

0 Vie{l,...,n}

Y

P




Since the function costg is convex and the constraints are
linear, the optimal solution can, theoretically, be found ef-
ficiently [2]. In practice though, available convex optimiza-
tion problem solvers can not scale well with the number n of
variables, especially when n is in the millions as is the case
for modern graphs like online social networks or the Web.
Hence we developed WIGGINS, an iterative method based on
Lagrange multipliers |2, Sect. 5.1], which can scale efficiently
and can be adapted to the MapReduce framework of compu-
tation [9], as we show in Sect. While we can not prove
that this iterative method always converges, we can prove
(Thm. [2)) that (i) if at any iteration the algorithm examines
an optimal schedule, then it will reach convergence at the
next iteration, and (ii) if it converges to a schedule, that
schedule is optimal. In Sect. [5] we show our experimental
results illustrating the convergence of WIGGINS in different
cases.

WIGGINS takes as inputs the collection F, the function ,
and the parameters ¢ and 0, and outputs a schedule p which,
if convergence (defined in the following) has been reached, is
the optimal schedule. It starts from a uniform schedule p<0>,

pg()) = 1/n for all 1 < i < n, and iteratively refines it
until convergence (or until a user-specified maximum num-
ber of iterations have been performed). At iteration j7 > 1,
we compute, for each value i, 1 < i < n, the function

j— fer(S)(1 —pU D (S5) !
WU )= > e (5)
(=001 -pl=1(S)))
s.t. 1eS
and then set
o) P W)

Zz:l pgjil)WZ(p(]’_l)) '

The algorithm then checks whether p) = pU=Y | If so, then
we reached convergence and we can return pl ) in output,
otherwise we perform iteration j + 1. The pseudocode for
WIGGINS is in Algorithm [I] The following theorem shows
the correctness of the algorithm in case of convergence.

THEOREM 2. We have that:

1. if at any iteration j the schedule p\9) is optimal, then
WIGGINS reaches convergence at iteration j + 1; and

2. if WIGGINS reaches convergence, then the returned sched-

ule p is optimal.

PROOF. From the method of the Lagrange multipliers [2]
Sect. 5.1], we have that, if a schedule p is optimal, then there
exists a value A € R such that p and A form a solution to
the following system of n + 1 equations in n + 1 unknowns:

where the gradient on the Lh.s. is taken w.r.t. (the compo-
nents of) p and to A (i.e., has n 4+ 1 components).
For 1 < i < n, the i-th equation induced by @ is

V[costg(p) + A(p1 + - - -

8(?31- costg(p) + A =0,

or, equivalently,

The term on the Lh.s. is exactly W;(p). The (n + 1)-th
equation of the system @ (i-e., the one involving the partial
derivative w.r.t. A) is

Consider now the first claim of the theorem, and assume
that we are at iteration j such that j is the minimum itera-
tion index for which the schedule p(j ) computed at the end
of iteration j is optimal. Then, for any i, 1 < i < n, we have

Wi(p') = A

because p<j ) is optimal and hence all identities in the form
of @ must be true. For the same reason, must also hold
for p\9). Hence, for any 1 < i < n, we can write the value
pz(.JH) computed at the end of iteration j + 1 as
pUHD) _ pWi(p?) _pA W)
2 i . T )
Sr e wL(pa))  10A

which means that we reached convergence and WIGGINS will
return pU* Y, which is optimal.

Consider the second claim of the theorem, and let j be
the first iteration for which p') = p¥~1 . Then we have, for
any 1 <1 < n,

1
o) — pe VWit —Y) G-1)
' ZZ 1ng WL (pu-ny

This implies
(J 1) Zp(ﬂ 1)W (s 1) 9)

and the r.h.s. does not depend on i, and so neither does
W;(pY~Y). Hence we have Wi (p¥=Y) = ... = W, (pU~Y)
and can rewrite @ as

(] 1) ZP(J 1)W (G- 1))

which implies that the identity holds for p<j71). More-
over, if we set

A=Wi(p?")

we have that all the identities in the form of hold. Then,
p(j ~1 and ) form a solution to the system @, which implies
that pU~" is optimal and so must be p¥’, the returned
schedule, as it is equal to p<j*1> because WIGGINS reached
convergence. [

4.2 Approximation through Sampling

We now remove the assumption, not realistic in practice,
of knowing the generating process I' exactly through F and
7. Instead, we observe the process using, for a limited time
interval, a schedule that iterates over all nodes (or a schedule
that selects each node with uniform probability), until we
have observed, for each time step ¢ in a limited time interval
[a, b], the set Z; generated by I', and therefore we have access
to a collection

T ={Ta,Tus1,.... To}. (10)



Algorithm 1: WIGGINS

input : F, 7, ¢, 0, and maximum number T" of
iterations

output: A c-schedule p (with globally minimum 6-cost,
in case of convergence)

1 for i < 1 ton do
2 ‘ p: < 1/n
3 end
4 for j < 1to T do
5 for i < 1 to n do
6 ‘ WZ +~—0
7 end
8 for S € F do
9 for : € S do
10 | Wi w; 4 S eEn
11 end
12 end
13 p°ld  p
14 for i + 1 ton do
P
15 pi W
16 end
17 if p°'¥ = p then // test for convergence
18 ‘ break
19 end
20 end

21 return p

We refer to T as a sample gathered in the time interval [a,b].
We show that a schedule computed with respect to a sample
T taken during an interval of 4(Z) = b — a = O(e ?logn)
steps has cost which is within a multiplicative factor ¢ €
[0,1] of the optimal schedule. We then adapt WIGGINS to
optimize with respect to such sample.

We start by defining the cost of a schedule w.r.t. to a
sample Z.

DEFINITION 1. Suppose p is a c-schedule and T is as in
Equation , with £(Z) = b — a. The 0-cost of p w.r.t. to
T denoted by costy(p,Z) is defined as

1 1
costy(p,Z) = UT) ; 1-6(1—p(S))e°

For 1 < i < n, define now the functions

| 1 fc(1 —p(S))*
WD) =gz D G- o psE

We can then define a variant of WIGGINS, which we call
WIGGINS-APX. The differences from WIGGINS are:

1. the loop on line [§ in Alg. [[] is only over the sets that
appear in at least one 7; € 7.
2. WIGGINS-APX uses the values W;(p,Z) (defined above)

instead of W;(p) (line [I0]in Alg. [I);

If WIGGINS-APX reaches convergence, it returns a schedule
with the minimum cost w.r.t. the sample Z. More formally,
by following the same steps as in the proof of Thm. [2] we
can prove the following result about WIGGINS-APX.

LEMMA 2. We have that:

1. if at any iteration j the schedule pm has minimum
cost w.r.t. I, then WIGGINS-APX reaches convergence
at iteration j + 1; and

2. if WIGGINS-APX reaches convergence, then the returned
schedule p has minimum cost w.r.t. .

Let ¢(Z) denote the length of the time interval during
which Z was collected. For a c-schedule p, costy(p,Z) is an
approximation of costg(p), and intuitively the larger £(Z),
the better the approximation.

We now show that, if £(Z) is large enough, then, with high
probability (i.e., with probability at least 1 —1/n" for some
constant 7), the schedule p returned by WIGGINS-APX in case
of convergence has a cost costg(p) that is close to the cost
costg(p*) of an optimal schedule p*.

THEOREM 3. Let r be a positive integer, and let T be a
sample gathered during a time interval of length

((z) » 3rin() +n(4)) 1?2(8)1’;(4)) . (11)

Let p* be an optimal schedule, i.e., a schedule with minimum
cost. If WIGGINS-APX converges, then the returned schedule
p is such that

+ e

* 1 *
costy(p*) < costg(p) < T costo(p”) .

To prove Thm. [3] we need the following technical lemma.

LEMMA 3. Let p be a c-schedule and Z be a sample gath-
ered during a time interval of length

3(rln(n) + In(2))
UZ) = T 20-9

where r is any natural number. Then, for every schedule p
we have

(12)

1
Pr(|costo(p,Z) — costg(p)| > € - costg(p)) < -

PrOOF. For any S € F, let Xs be a random variable

which is m with probability 7(.S), and zero other-

wise. Since p(S) € [0, 1], we have

1
1<Xg<—— .
=T =19

If welet X =3 . Xs, then
costo(p) = E[X] = 3 E[Xs] > > 7(S) . (13)
SeF SeF
Let Z =) 4> m(S). Then we have

Z
Z7< X< —— .
-~ 1-0

Let X% be the i-th draw of Xg, during the time interval 7
it was sampled from, and define X" = .. Xg. We have

costo(p,Z) = %ZXI .

Let now

U7)(1 - 0)

nw= Tcost(q(p) .



By using the Chernoff bound for Binomial random vari-
ables [29] Corol. 4.6], we have

Pr (|costg(p,Z) — costa(p)| > ecostg(p))

=Pr ZXi — {(Z)costg(p)| > el(T)costy(p)

1- ) 2
=Pr TQZXl—M > ep SQeXp(—EB'u)

< 2exp (— 37

where the last inequality follows from the rightmost inequal-
ity in (I3). The thesis follows from our choice of ¢(Z). [J

We can now prove Thm. [3]

Proor or THM. The leftmost inequality is immedi-
ate, so we focus on the one on the right. For our choice
of ¢(Z) we have, through the union bound, that, with prob-
ability at least 1 — 1/n", at the same time:

(1 —€)costg(p) < costg(p,T) < (14 ¢€)costy(p), and
(1 —¢)costy(p*) < costa(p*,Z) < (1+¢)coste(p™) (14)

Since we assumed that WIGGINS-APX reached convergence
when computing p, then Thm. [3] holds, and p is a schedule
with minimum cost w.r.t. Z. In particular, it must be

costy(p,Z) < costy(p”,Z) .
From this and , We then have
(1—&)costo(p) < costg(p,Z) < costg(p”,Z) < (1+€)costo(p”)

and by comparing the leftmost and the rightmost terms we
get the thesis. [

4.3 Dynamic Settings

In this section we discuss how to handle changes in the
parameters F and 7 as the (unknown) generating process
I' evolves over time. The idea is to maintain an estimation
7(S) of w(S) for each set S € F that we discover in the
probing process, together with the last time ¢ such that an
item (¢, .S) has been generated (and caught at a time ¢’ > t).
If we have not caught an item in the form (¢”,S) in an
interval significantly longer than 1/7(S), then we assume
that the parameters of I' changed. Hence, we trigger the
collection of a new sample and compute a new schedule as
described in Sect.

Note that when we adapt our schedule to the new environ-
ment (using the most recent sample) the system converges to
its stable setting exponentially (in ) fast. Suppose L items
have been generated since we detected the change in the
parameters until we adapt the new schedule. These items,
if not caught, loose their novelty exponentially fast, since
after ¢ steps their novelty is at most LO* and decreases ex-
ponentially. In our experiments (Sect. [5) we provide differ-
ent examples that illustrate how the load of the generating
process becomes stable after the algorithm adapts itself to
the changes of parameters.

4.4 Scaling up with MapReduce

In this section, we discuss how to adapt WIGGINS-APX to
the MapReduce framework [9]. We denote the resulting al-
gorithm as WIGGINS-MR.

20(T)(1 — 6)cost9(p)> < 2exp (_ 20(T)(1 — a))
— 3 )

In MapReduce, algorithms work in rounds. At each round,
first a function map is executed independently (and there-
fore potentially massively in parallel) on each element of the
input, and a number of (or zero) key-value pairs of the form
(k,v) are emitted. Then, in the second part of the round,
the emitted pairs are partitioned by key and elements with
the same key are sent to the same machine (called the re-
ducer for that key), where a function reduce is applied to
the whole set of received pairs, to emit the final output.

Each iteration of WIGGINS-APX is spread over two rounds
of WIGGINS-MR. At each round, we assume that the cur-
rent schedule p is available to all machines (this is done in
practice through a distributed cache). In the first round, we
compute the values p;W;, 1 < i < n, in the second round
these values are summed to get the normalization factor,
and in the third round the schedule p is updated. The input
in the first round are the sets S € Z. The function map,(S)
outputs, a key-value pair (¢,vg) for each ¢ € S, with

Oc(1 — p(S)“™"
(D)1 =01 = p(5)))?

The reducer for the key ¢ receives the pairs (i,vg) for each
S € 7 such that ¢ € S, and aggregates them to output the

pair (i, g;), with
gi = PiZ'US =p:W; .

The set of pairs (4, g;), 1 <14 < n constitutes the input to the
next round. Each input pair is sent to the same reducerEI
which computes the value

g= Zgi = Z piWs
i=1 i=1

and uses it to obtain the new values p; = g;/g, for 1 <
1 < n. The reducer then outputs (i, p;). At this point, the
new schedule is distributed to all machines again and a new
iteration can start.

The same results we had for the quality of the final sched-
ule computed by WIGGINS-APX in case of convergence carry
over to WIGGINS-MR.

vs =

S. EXPERIMENTAL RESULTS

In this section we present the results of our experimental
evaluation of WIGGINS-APX.
Goals. First, we show that for a given sample Z, WIGGINS-

APX converges quickly to a schedule p* that minimizes costy(p, Z)

(see Thm. . In particular, our experiments illustrate that
the sequence costy(p!),Z),costy(p?,Z),... is descending
and converges after few iterations. Next, we compare the
output schedule of WIGGINS-APX to four other schedules: (i)
uniform schedules, (ii) proportional to out-degrees, (iii) pro-
portional to in-degrees, and (iv) proportional to undirected
degrees, i.e., the number of incident edges. Specifically, we
compute the costs of these schedules according to a sample 7
that satisfies the condition in Lemma [3]and compare them.
Then, we consider a specific example for which we know the
unique optimal schedule, and show that for larger samples
WIGGINS-APX outputs a schedule closer to the optimal. Fi-
nally, we demonstrate how our method can adapt itself to
the changes in the network parameters.

3This step can be made more scalable through combiners,
an advanced MapReduce feature.



Datasets #nodes  #edges (|Vikl,|Vsool,|Vioo|) gen. rate
Enron-Email 36692 367662 (9,23,517) 7.22
Brightkite 58228 428156 (2,7,399) 4.54
web-Notredame 325729 1497134 (43,80,1619) 24.49
web-Google 875713 5105039  (134,180,3546) 57.86

Table 1: The datasets, corresponding statistics, and the rate of
generating new items at each step.

Environment and Datasets. We implemented WIGGINS-
APX in C++. The implementation of WIGGINS-APX never
loads the entire sample to the main memory, which makes it
very practical when using large samples. The experiments
were run on a Opteron 6282 SE CPU (2.6 GHz) with 12GB
of RAM. We tested our method on graphs from the SNAP
repositoryEI (see Table for details). We always consider the
graphs to be directed, replacing undirected edges with two
directed ones.

Generating process. The generating process I' = (F, )
we use in our experiments (except those in Sect. |5.1.1]) sim-
ulates an Independent-Cascade (IC) model [17]. Since ex-
plicitly computing 7(S) in this case does not seem possible,
we simulate the creation of items according to this model as
follows. At each time ¢, items are generated in two phases:
a “creation” phase and a “diffusion” phase. In the creation
phase, we simulate the creation of “rumors” at the nodes:
we flip a biased coin for each node in the graph, where the
bias depends on the out-degree of the node. We assume a
partition of the nodes into classes based on their out-degrees,
and, we assign the same head probability for the biased coins
of nodes in the same class, as shown in Table[2] In Table [T}
for each dataset we report the size of the classes and the ex-
pected number of flipped coins with outcome head at each
time (rightmost column). Let now v be a node whose coin

Class Nodes in class Bias
Vik {i €V : deg™(i) > 1000} 0.1
Vsoo {i €V : 500 < degt(i) < 1000} 0.05
Vioo {i€V : 100 < deg® (i) < 500}  0.01
Vo {i €V : deg" (i) < 100} 0.0

Table 2: Classes and bias for the generating process.

had outcome head in the most recent flip. In the “diffusion”
phase we simulate the spreading of the “rumor” originating
at v through network according to the IC model, as follows.
For each directed edge e = u — w we fix a probability
pe that a rumor that reached w is propagated through this
edge to node w (as in IC model), and events for different
rumors and different edges are independent. Following the
literature [5] [6] [16], 17, B3], we use pu—sw = ﬁ. If we
denote with S the final set of nodes that the rumor created
at v reached during the (simulated) diffusion process (which
always terminates), we have that through this process we
generated an item (¢,.S), without the need to explicitly de-
fine 7(S).

5.1 Efficiency and Accuracy

In Sect. [41] we showed that when a run of WIGGINS-
APX converges (according to a sample Z) the computed c-
schedule is optimal with respect to the sample Z (Lemma|2)).

“http://snap.stanford.edu

In our first experiment, we measure the rate of convergence
and the execution time of WIGGINS-APX. We fix € = 0.1,
6 = 0.75, and consider ¢ € {1,3,5}. For each dataset, we
use a sample Z that satisfies , and run WIGGINS-APX
for 30 iterations. Denote the schedule computed at round
i by p’. As shown in Figure [1] the sequence of cost values
of the schedules p’s, costq(p*, ), converges extremely fast
after few iterations.

Datasets |Z| avg. item size avg. iter. time (sec)
Enron-Email 97309 12941.33 204.59
Brightkite 63652 17491.08 144.35
web-Notredame 393348 183.75 10.24
web-Google 998038 704.74 121.88

Table 3: Sample size, average size of items in the sample, and the
running time of each iteration in WIGGINS-APX (for ¢ = 1).

For each graph, the size of the sample Z, the average size
of sets in Z, and the average time of each iteration is given
in Table[3] Note that the running time of each iteration is a
function of both sample size and sizes of the sets (informed-
sets) inside the sample.
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Figure 1: The cost of intermediate c-schedules at iterations of

WIGGINS-APX according to Z.

Next, we extract the 1-schedules output by WIGGINS-APX,
and compare its cost to four other natural schedules: unif,
outdeg, indeg, and totdeg that probe each node, respec-
tively, uniformly, proportional to its out-degree, proportional
to its in-degree, and proportional to the number of incident
edges. Note that for undirected graphs outdeg, indeg, and
totdeg are essentially the same schedule.

To have a fair comparison among the costs of these sched-
ules and WIGGINS-APX, we calculate their costs according to
10 independent samples, Z1,...,Z1o that satisfy (12), and
compute the average. The results are shown in Table 4] and
show that WIGGINS-APX outperforms the other four sched-
ules.


http://snap.stanford.edu

Dataset WIGGINS-APX uniform outdeg indeg totdeg
Enron-Email 7.55 14.16 9.21 9.21 9.21
Brightkite 4.85 9.64 6.14 6.14 6.14
web-Notredame 96.10 97.78 97.37  97.43 97.40
web-Google 213.15 230.88  230.48 230.47  230.47

Table 4: Comparing the costs of 5 different 1-schedules.

5.1.1 A Test on Convergence to Optimal Schedule

Here, we further investigate the convergence of WIGGINS-
APX, using an example graph and process for which we
know the unique optimal schedule. We study how close the
WIGGINS-APX output is to the optimal schedule when (i) we
start from different initial schedules, p°, or (ii) we use sam-
ples Z’s obtained during time intervals of different lengths.

Suppose G = (V, E) is the complete graph where V' = [n].
Let T = (F,n) for F = {S € 2" | 1 < |S| < 2}, and
w(S) = ﬁ It is easy to see that costg(p) is a symmetric
function, and thus, the uniform schedule is optimal. More-
over, by Corollary [ the uniform schedule is the only optimal
schedule, since {v} € F for every v € V. Furthermore, we let
6 = 0.99 to increase the sample complexity (as in Lemma [3)
and make it harder to learn the uniform/optimal schedule.
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Figure 2: The cost of WIGGINS-APX outputs and their variation dis-
tance to the optimal schedule: The top and bottom edge of each box
are the 25" and 75" percentiles respectively , and the median (50th
percentile) is shown by a red line segment. The + symbols denote
outliers, i.e., points larger than g3 + 1.5(¢gs — ¢1) or smaller than
q1 — 1.5(g3 — q1), where g1 and g3 are the 25*" and 75'" percentiles,
respectively. The whiskers extend to the most extreme data points
that are not outliers.

In our experiments we run the WIGGINS-APX algorithm,
using (i) different random initial schedules, and (ii) samples
T obtained from time intervals of different lengths. For each
sample, we run WIGGINS-APX 10 times with 10 different ran-
dom initial schedules, and compute the exact cost of each
schedule, and its variation distance to the uniform schedule.
Our results are plotted in Figure[2 and as shown, by increas-
ing the sample size (using longer time intervals of sampling)
the output schedules gets very close to the uniform schedule
(the variance gets smaller and smaller).

5.2 Dynamic Settings

In this section, we present experimental results that show
how our algorithm can adapt itself to the new situation. The
experiment is illustrated in Fig. [3] For each graph, we start
by following an optimal 1-schedule in the graph. At the be-
ginning of each “gray” time interval, the labels of the nodes
are permuted randomly, to impose great disruptions in the

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500
time time

Figure 3: Perturbation, Sampling, and Adapting (For details see

Section ‘

system. Following that, at the beginning of each “green”
time interval our algorithm starts gathering samples of I'.
Then, WIGGINS-APX computes the schedule for the new sam-
ple, using 50 rounds of iterations, and starts probing. The
length of each colored time interval is R = W,
for e = 0.5 and 6 = 0.75, motivated by Theorem

Since the cost function is defined asymptotically (and ex-
plains the asymptotic behavior of the system in response to
a schedule), in Figurewe plot the load of the system Lg(t)
over the time (blue), and the average load in the normal and
perturbed time intervals (red). Based on this experiment,
and as shown in Figure [3] after adapting to the new sched-
ule, the effect of the disruption caused by the perturbation
disappears immediately. Note that when the difference be-
tween the optimal cost and any other schedule is small (like
web-Notredame), the jump in the load will be small (e.g.,
as shown in Figure [I] and Table [d] the cost of the initial
schedule for web-Notredame is very close the optimal cost,
obtained after 30 iteration).

6. CONCLUSIONS

We formulate and study the (8, ¢)-Optimal Probing Sched-
ule Problem, which requires to find the best probing sched-
ule that allows an observer to find most pieces of informa-
tion recently generated by a process I', by probing a limited
number of nodes at each time step.

We design and analyze an algorithm, WIGGINS, that can
solve the problem optimally if the parameters of the process
I' are known, and then design a variant that computes a
high-quality approximation of the optimum schedule when
only a sample of the process is available. We also show that
WIGGINS can be adapted to the MapReduce framework of



computation, which allows us to scale up to networks with

million of nodes.

The results of experimental evaluation

on a variety of graphs and generating processes show that
WIGGINS and its variants are very effective in practice.

Interesting directions for future work include generaliz-
ing the problem to allow for non-memoryless schedules and
different novelty functions.
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