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|. Data mining, sampling, and issues thereof
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What happens in data mining?

GIVEN:
e Dataset D

e Family F of functions f : D — [a,b] C R

GoaL: Compute mp(f) = ﬁ > vep f(x), for each f € F
EXAMPLES:

e D is a database, F is a family of SQL queries;

e Disagraph G = (V. E), F contains an f, for each v € V

ISSUE: Exact computation of every mp(f), f € F, is too expensive on large datasets



What should we aim for?

INTUITION: in many applications, high-quality approximations are sufficient

Definition (- -approximation)
Given ¢ € (0,1), a z-approximation to F on D is a collection
B = {m(f),f € F}

such that
|m(f) — mp(f)| < e, foreach f € F

A definition with relative/multiplicative error is also possible
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How can we get a s-approximation?

SAMPLING!

How TO PROCEED:
1 Define a probability distribution 7 on D
2 Create a sample S by sampling enough points independently from D according to =

3 Compute m(f) on S, usually as ms(f) = ﬁ >oxes f(x)

WE NEED:

1 A suitable 7
2 An efficient sampling scheme

3 A sample size |S|, sufficient for B to be an s-approximation, with prob. > 1 —§
...or a stopping condition to understand whether S is large enough
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Isn't it obvious how to do it?

We want to compute a quantity ¢ such that
Pr(3f € Fst. |mg(f) —mp(f)] >¢e) <o

The probability is taken over all samples of size /.

IDEA: Use tail bounds for a single f, and then the union bound over F

(SPOILER: It won't be that easy)
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Let's make an example

Let each f = f4 € F be the indicator function for some property A
(f(x) = 1if x € D satisfies A, 0 othw.)

Then mp(f) is a proportion and |S|ms(f) has a Binomial distribution B(|S|, mp(f))
Apply the Chernoff bound and then the union bound over F:

Pr(3f € Fs.t. Img(f) —mp(f)] >¢) < ZPr Ims(f) — mp(f)| > ¢)
feF

< |Fexp (—1S[e%/3)
For the r.h.s. to be at most §, it must be

S| > = & <In]:\ +In (15>



What's disappointing with this sample size?

3 1
|S| > = (In}"H—In 5)
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What's disappointing with this sample size?

3 1
|S| > = (In}"\ +In 5)

1. 7 may be infinite. E.g., in the classification setting:

x = (w,y), y € {0,1}, and fy(x) is the loss of a classifier ¢y on x, § € © C R’

(S is the training set, |[ms(f) — mp(f)| is the generalization error)
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What's disappointing with this sample size?

4]

1. 7 may be infinite. E.g., in the classification setting:

3 1
|S| > = (In]:\ +In >

x = (w,y), y € {0,1}, and fy(x) is the loss of a classifier ¢y on x, § € © C R’

(S is the training set, |[ms(f) — mp(f)| is the generalization error)

2. The sample size does not depend on any characteristic of D

E.g., on properties of the graph G =D

47



Why should we want such dependency on D7

To let the data speak!

For a fixed F, computing an s-approximation to & may be more difficult on D; than
on Dz;

D can give information on the sample complexity of computing an c-approximation

“In|F|" is a rough measure of complexity of the task, as it ignores D

10 /47



Are there better measures of sample complexity?

Yes! Statistical learning theory is “all” about them:
VC-dimension, pseudodimension, covering numbers, Rademacher averages, . ..

They allow to replace “In |F|" with g(F,D) or even g(F,S): let the data speak!

CHALLENGES:
1) Developed for supervised learning;
2) Long-standing reputation of being only of theoretical interest;

3) Not exactly straightforward to interpret, compute, bound
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CHALLENGES:

1) Developed for supervised learning;

2) Long-standing reputation of being only of theoretical interest;

3
In§
T\

Elegant, insightful theory: “Nothing is more practical than a good theory."

3) Not exactly straightforward to interpret, compute, bound:

sup |[mgs(f) — mp(f)| < 2Ey [sup Z/\ f(xi)
feF fE]:

APPEAL:
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|l. Rademacher Averages
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What are Rademacher averages?

A binary r.v. A has a Rademacher distribution if Pr(A = 1) = Pr(A = —-1) =1/2

Let / = |S| and let A1,..., \; be ¢ independent Rademacher r.v's.

Definition (Rademacher Average)

The Rademacher average of F is

l
Ry(F) = Es [max % > Nf (x,.)]

feF P}

Rademacher averages enjoy enormous success in statistical learning theory
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How do we get to such weird definition?
We have

Pr(3f € F s.t. |ms(f) — mp(f)| >¢) =Pr <rp€a%< Ims(f) —mp(f)| > e

N— "

= Pr (rpga% [ms(f) — mp(f)] > 8) + Pr (rpeafx [mp(f) — ms(f)] > ¢

Let's look at

Es | max[ms(F) - mo(f)]| = Es

paxms() ~ Es Ims (7]

Theorem

s | max[ms(f) - Es Ims(M)] < 2R,(7)

14 /47



Proof idea

Let S’ = {x{,...,x/} be a second sample, independent from &

£ |max [ms(f) - Es [mg(f)]]} — Eg

max ms(f) - s [ms:(F)]
(Jensen's Inequality) <Es s/ {r)pea}_( [ms(f) — mgr(f)]}
1< 1<
<Ess [max [ Y f(x;)—=Y f(x!
<ees 13,00 50|

1 4

B pag | 324 ()~ )|
i=1

1L 1L
<Esx [rpea; [E /z::l Nif(xi) | | + Esr oz [Tga% [E ; )\if(Xf/)H

< 2Ry(F)
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Where do we go from here?

Theorem (McDiarmid's inequality)

Let Xi,..., X, be independent random variables and let h(xy,...,x;) be a function
s.t. a change in variable x; can change the value of the function by no more than c;:
sup  |hA(xa, .. Xy x0) — h(x1, X xe)] < 6

X17'~~¢X[¢X,',

Then, for any € > 0

l
Pr(h(X1,..., X)) —E[h(X1,...,X;)] > €) < exp (23/2 c.2>

16 /47



How do we use McDiarmid'’s inequality?

Recall the bounded differences condition from McDiarmid's inequality:

sup  |h(x1, ..y Xy xe) = h(xt, . X, X)) <6

/
X17~--,-XZ-X,-

The function h(xi,...,x;) = h(S) = maxser [ms(f) — mp(f)]

satisfies the condition with ¢; = |bf‘ (in the rest of the talk we assume |b — a| = 1)

The same holds for the function h(xi, ..., x;) = h(S) = E, |:ma><f€]-‘ 1 S /\,-f(x,-)]

This function is the empirical Rademacher average of 7 on S.
We denote it with Rs(F). Its expectation is Ry(F).
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Let's put everything together

Let's start from

E rfnea}é [ms(f) — mD(f)]:| < 2Ry(F)

Now apply McDiarmid to maxser [ms(f) — mp(f)]. With probability > 1 —d/3:

In 3
f) —mp(f)] <2 =2
max [ms(f) — mp(£)] < 2Ra(F) + |/
Now apply McDiarmid to Rs(F). With probability at least > 1 — 26/3:

max [ms(f) — mp(f)] < 2Rs(F) + 3\/@

feF

Applying McDiarmid to maxser [mp(f) — ms(f)]. With probability at least > 1 — o:

3
|n3

max |ms(f) — mp(f)| < 2Rs(F) + 3\/7
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Formally. . .

Theorem
Let S be a fixed sample of size /. With probability at least 1 — ¢,

In 3
f) — f)l <2 —9
max|ms(f) — mp(F)] < 2Rs(F) +3|/ -

The quantity on the r.h.s. depends only on the sample S.

We can compute the “quality” of a sample from the sample itself!

... but how do we compute Rs(F)?
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How do we compute Rs(F)?
Given S, define, for each f € F,
ve = (f(xa), ..., f(x))

Consider the set
VS = {vf, fe .7:}

If the co-domain of the functions f € F is finite, then Vs is finite
Then |Vs| < |F|, and usually |Vs < |F|.

Theorem (Massart's Finite Class Lemma)

2In |V,
R(F) < max vl V20

If we can keep track of Vs, or bound the max. || - [|2, we have a bound to Rs(F).
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Why does it make sense?

Rs(F) = Ey [max 3 A,-f<x,->]

Assume F contains classifiers from R to {—1,1}.

Assume that \,..., A¢ are the labels of training set S. Then

/\,'f(X,', )\,) =1

when f correctly classifies x;. —1 otherwise.

Rs(F) is high when, for any labeling A1, ..., )\, there is a function f € F that
correctly classify many points of the training set.

If this is the case, then F can essentially fit £ random noise points, so it is a rich class

Thus, learning the “correct” classifier requires more training points
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Recap and comments

Rade.Avg. allow to compute a bound to the maximum deviation from the sample
For c-approximation, keep sampling until the bound is less than ¢ (caveats)
Keeping track of Vs is not always straightforward, but it's the key task

The bounds presented here have much tighter variants

There are relative/multiplicative error variants
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[1l. Betweenness centrality estimation with Rademacher Averages
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What am | going to talk about?

ABRA: A sampling-based algorithm for betweenness centrality estimation on static and
dynamic graphs. lts analysis uses Rademacher averages.

ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages

Joint work with Eli Upfal (Brown);

ACM KDD'16;

Journal under submission,
http://bit.ly/abra-betweenness.
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What are the important nodes in a graph?

Let G = (V,E) be a graph with |V/| = n nodes and |E| = m edges.

QUESTION: Can we find the most important nodes in G?
l.e. (almost), can we rank the nodes by importance?

PREREQUISITE: Quantify the importance of a node through a numerical score.

Definition (Centrality measure)

A function f : V — R™ expressing the importance of a node.
The higher is f(x), the more important is x € V.

MoTIVATION: Find relevant webpages on the web, influential participants in a social
network, key concepts in a E-R graph, ...

EXAMPLES: degree, PageRank, closeness, betweenness, ...
Each centrality measure quantifies importance in a very specific way.
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What is betweenness centrality?

INTUITION: Assume that
1) every node wants to communicate with every node; and
2) communication progresses along Shortest Paths (SPs).

Then, the higher the no. of SPs that a node v belongs to, the more important v is.

Definition (Betweenness Centrality (BC))

For each node x € V, the betweeness b(x) of x is:

b(x) = — 3 owl) o,

n(n—1) uindvey  Tuv

e 0,,: number of SPs from v to v, u,v € V;

e 0,,(x): number of SPs from v to v that go through x.

Roughly: b(x): the weighted fraction of SPs that go through x, among all SPs in G.
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May | give an example?

Node x a b ¢ d e f g h

b(x) 0 0.250 0.125 0.036 0.054 0.080 0.268 0
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How do we compute it exactly for all vertices?

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex s € V:
1) Build the SP DAG from s via Dijkstra/BFS;
2) Traverse the SP DAG from the most distant node towards s, in reverse order of

distance. During the walk, appropriately increment b(v) of each non-leaf node v
traversed.
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How do we compute it exactly for all vertices?

Brandes's Algorithm (BA) [Brandes 2001]

For each vertex s € V:
1) Build the SP DAG from s via Dijkstra/BFS;

2) Traverse the SP DAG from the most distant node towards s, in reverse order of
distance. During the walk, appropriately increment b(v) of each non-leaf node v
traversed.

Source s: 1

(update to b(v) not shown)

TIME COMPLEXITY: O(nm + n?log n)
n Dijkstra's, plus n backward walks,
taking at most n each

Too much even with just 10* nodes.
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What kind of approximation are we looking for?

Let b(x) denote a value that approximates b(x), x € V.

Definition ( -approximation)
Let ¢ € (0.1), and 0 € (0,1) be user-specified parameters;

An (e, 8)-approximation is a set {b(x), x € V/} of n values such that
Pr(3x € V s.t. |b(x) — b(x)| >¢) <6 .

le., with prob. > 1 — ¢, for all x € V/, b(x) is within = of b(x).

An (e,0)-approximation offers uniform probabilistic guarantees over all the nodes.
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Are there algorithms to compute (¢, §)-approximations?

Yes, they use random sampling, but of different “objects":
= [Brandes and Pich 2007]: sampling of source nodes for BA uniformly at random;
= [R. and Kornaropoulos 2015]: sampling of SPs non-uniformly at random;

NOTE: they obtain approximations by performing fewer computations,
not by running BA on a smaller graph.

Key question in sampling algorithms:

How many samples does the algorithm need to obtain a (&, §)-approximation?

ANSWER:
= [Brandes and Pich 2007]: O (E% (In n+In %)) source nodes;

= [R. and Kornaropoulos 2015]: O (%2 <|og2 D +1n %)) SPs (D: diameter of G);
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What's wrong with these algorithms?

[BRANDES AND PICH 2007]:

= the sample size does not depend on the edge structure of G, only on n;
= Jots of work per sample (SSSP, i.e., full exploration of the graph).

[R. AND KORNAROPOULOS 2015]:
= the sample size is derived by considering the worst-case graph of diameter D;

= lots of wasted work per sample (s — t SP computation, but a single SP is used);

= must compute an upper bound to the diameter before sampling can start.

Our algorithm, ABRA, solves these issues.
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How does ABRA solve these issues?

ABRA computes an (e, 0)-approximation using progressive random sampling.

ABRA in two lines (details later)

= ABRA immediately starts sampling, computing the approximation as it goes.

= At predefined intervals, ABRA checks a stopping condition to understand, using the
sample, whether the current approximation has the desired quality.

The analysis of correctness uses Rademacher averages and pseudodimension.

Challenge

The stopping condition must be fast to check and satisfied at small sample sizes
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Intuition from a Rademacher Average p.o.v.

D is the set of pairs of different nodes (v, v) in V:

D ={(u,v),(u,v) e VxV,u#v}

Sample from D uniformly at random

F contains one function f,, for each w € V. £, : D — [0,1]:

guv(w)

Ouv

fw(u,v) =

ABRA keeps track of the set Vs of vectors vs,, w € V/, and uses it to compute bounds
to the maximum deviations.
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How does ABRA work?

ABRA from 30,000 ft:

INPUT: G, ¢, 0, sample schedule (5;)i>1
OUTPUT: (e,d)-approximation
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ABRA from 30,000 ft:

INPUT: G, ¢, 0, sample schedule (5;)i>1
OUTPUT: (e,d)-approximation

T < set of triples (rn € R, € R, C C V)), initially containing only (0,0, V);
b(x) « 0, forall x e V; i+ 1, S « 0
At iteration i:
For j«+ 1to S —S; 1:
1) Sample a pair (u, v) of nodes uniformly at random from V x V;
2) Get the SP DAG from u to v (Dijkstra/BFS);
3) Increment b(x) by o, (x)/o,, for all x € V internal to the SP DAG;
4) Update T; // stay tuned
Check a stopping condition using T; // stay tuned

If the stopping condition is satisfied, then output {b(x)/S;, x € V}, else iterate;
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How does ABRA really work?

1) Sample a pair (u, v) of nodes uniformly at random from V x V;

2) Get the SP DAG from u to v (Dijkstra/BFS);

3) Increment b(x) by &,,(x)/o,, for all x € V/ internal to the SP DAG;
4) Update T,

Node v b(v)

1
1/2
1/2
0
1
1/2
1/2
1/2
0

—

O© 00 ~NO 1 b WiN
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1
2
3

Sampled pair: (1,8)

Node v b(v)

—

1
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0
1
1/2
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How does ABRA really work?

Sample a pair (u, v) of nodes uniformly at random from V x V;

3

1)
2) Get the SP DAG from u to v (Dijkstra/BFS);
)
4) Update T,

Sampled pair: (1,8)

Increment b(x) by o,,(x)/o,, for all x € V internal to the SP DAG;

SPs: 018 = 3

Node v b(v)

o18(v)/o18

—_

1
1/2
1/2

0

1
1/2
1/2
1/2

0

©O© 00O NO OB WN

0
1/3
2/3
0
1/3
1/3
1/3
0
0
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Increment b(x) by oy, (x)/oy, for all x € V internal to the SP DAG;

1)
2) Get the SP DAG from u to v (Dijkstra/BFS);
3)

)

4) Update T,
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How does ABRA really work?

Sample a pair (u, v) of nodes uniformly at random from V x V;

Increment B(x) by o,y (x)/ou, for all x € V internal to the SP DAG,;

1)
2) Get the SP DAG from u to v (Dijkstra/BFS);
3)

)

4) Update T; // stay tuned
Sampled pair: (1,8)

SPs: 018 = 3

Node v b(v)
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What is 77

Assume to observe ABRA after it has sampled k pairs of nodes: (uy, v1), ..., (uk, vk).

For any x € V, let v, = < .....

Oupvy ' " Oupvy

Tuy vy (%) Tu vy (X)>;

Let Vi = {v,,x € V}. There may be distinct nodes x and y s.t. v, = v;

V) induces a partitioning of V into classes C, indexed by the elements of V.

T contains one and only one element (||v||1,||v||]2, C,) for each class C, in the
partitioning. At the start, all nodes belong to one class, and 7 = {(0,0, V)}

As ABRA takes more samples, the partitioning is refined, and T changes;

ABRA leverages properties of the refining process to track the partitioning efficiently.

T is updated efficiently after each sample.
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What is the stopping condition?

ABRA outputs the approximations (b(x)).c\ when the stopping condition is satisfied.

The stopping condition:
1 uses 7 to obtain r = maxycy, ||v|| and |Vs|;

2 then uses r |Vs| in Massart's Lemma to compute an upper bound w to Rs(F);
3 then uses w and ¢ to obtain a bound ¢ to max,cy |b(x) — b(x)|.
4 and finally checks whether £ < e.

KEY THEOREM: The output is a (£, )-approximation.

CAVEAT: Need union bound over all possible iterations, so at iteration i use ¢’ = /2
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Will ABRA ever stop sampling?

Yes, it will.

Theorem
Let O be the size of the largest Weakly Connected Component in G.

After having sampled
1
= (logo 0 + In(1/6))

pairs of nodes, then ABRA can stop: the output will be an (=, )-approximation.

INTUITION:
log, 0 is an upper bound to the pseudodimension of the problem.

(pseudodimension: VC-dimension for real-valued functions).
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Can we do better?

The bound to the pseudodimension is disappointing: for a connected G, 0 = log, |V/|.
We could get the same result with a simple union bound.
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Can we do better?

The bound to the pseudodimension is disappointing: for a connected G, 0 = log, |V/|.
We could get the same result with a simple union bound.

Conjecture

Let G be a graph and let x be the maximum positive integer for which there exists a
set L= {(u1,v1),....,(u., vs)} of £ distinct pairs of distinct vertices such that

i Oujv; = !
= 1£/2]
then the pseudodimension is at most «.

E.g., if there is at most 1 SP between each pair of nodes (road networks), then
pseudodimension is at most 3.
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Is the conjecture tight?
The conjecture is tight at least up to x = 4.
This graph satisfies the conjecture for x = 4 and has pseudodimension d = 4:
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How does ABRA perform in practice?

Great!

IMPLEMENTATION: C++, extension of NetworKit.

DATASETS: from SNAP (Soc-Epinionsl, P2p-Gnutella, Email-Enron, Cit-HepPh).

ACCURACY: Maximum error was always < &, Avg. and min. errors were < ¢.

FINAL SAMPLE SIZE:
0(25 - 10%) for £ = 0.01, O(10%) for £ = 0.03 (varies across graphs);
Smaller than RK (=~ 2x to 4x fewer samples).
RUNTIME:
Faster than BA (=~ 5x for ¢ = 0.01, ~ 40x for ¢ = 0.03);
Faster than RK (=~ 3x for ¢ = 0.01, ~ 6x for ¢ = 0.03).
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Did we do our homework?
This slide is close to unreadable on purpose.

Speedup Runtime
w.r.t. Breakdown (%) Absolute Error (x10°)
Reduction
Runtime Stop Sample w.r.t.
Graph € (sec.) BA RK Sampling Cond. Other Size RK max avg stddev
. 0.005 483.06 136 2.90 09.083 0.014 0002 110,705 2.64 7084  0.35 1.14
Soc-Epinionsl 019 124.60 528 331 99.956 0.035  0.009 28,601 2.55 12960  0.69 2.22
Directed 0.015 57.16  11.50  4.04 99.927 0.054  0.018 13,114 2.47 198.90  0.97 3.17
|V| =75879  0.020 3200 19.98  5.07 99.895 0.074  0.031 7,614 2.40 303.86  1.22 431
|E| — 508,837  0.025 2188  30.05  6.27 99.862 0.002  0.046 5,034 2.32 22363  1.41 5.24
0.030 1605 4095  7.52 99.827 0111  0.062 3,668 221 38224 158 6.37
0.005 100.06 178 427 99.949 0.041  0.010 81,507 4.07 3843 058 1.60
P2p-Gnutella3l 019 26.05 6.85  4.13 99.861 0.103  0.036 21,315 3.90 6576  1.15 3.13
Directed 0.015 1191 1498  4.03 99.772 0.154  0.074 9,975 3.70 109.10 163 451
|V| =62,586  0.020 711 2500  3.87 09.688 0101  0.121 5,840 3.55 13033 215 6.12
|E| = 147,802 0.025 484 3685  3.62 99.607 0220  0.174 3,905 3.40 17193 252 7.43
0.030 341 5238  3.66 99.495 0262  0.243 2,810 3.28 23636  2.86 8.70
Email-Enron 0.010 202.43 118 1.10 99.984 0.013  0.003 66,882 1.09 14551 048 2.46
Undirected 0.015 91.36 263  1.09 99.970 0.024  0.006 30,236 1.07 253.06  0.71 3.62
|V| — 36,682  0.020 53.50 448  1.05 99.955 0.035  0.010 17,676 1.03 20030 0.93  4.83
0.025 31.99 750 111 99.932 0.052  0.016 10,589 1.10 54822  1.21 6.48
|E| = 183,831 g 030 2406 997 103  99.918 0061  0.021 7,923 1.02 47732 138 7.34
Cit-HepPh 0.010 215.98 236 221 99.966 0.030  0.004 32,469 2.25 12908 172 3.40
Undirected 0.015 98.27 510 216 99.938 0.054  0.008 14,747 2.20 22618  2.49 5.00
V| = 34,506 0020 58.38 874 205 99.914 0.073  0.013 8,760 2.08 246.14 317 639
0.025 37.79 1350  2.02 99.801 0.001  0.018 5,672 2.06 28921  3.80 7.7
|E| = 421,578 0030 2713 18.80  1.95 99.869 0.108  0.023 4,076 1.99 350.45  4.45 9.53
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Did we really do our homework?

This slide is close to unreadable on purpose.
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To sum up...

ABRA is an algorithm to estimate betweenness centrality of all nodes

It uses progressive random sampling of pairs of nodes, plus BFS/Dijkstra for each pair
It keeps track of Vs as it samples

The analysis relies on Rademacher averages

It is very fast, showing the practicality of Rademacher averages
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V. Conclusions
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To sum up...

Rademacher averages: a very powerful tool for analyzing sampling algorithms

They are efficient in practice, no longer only of theoretical interest

We also used them for other key tasks in data analysis, e.g., frequent pattern mining
They can also be used to control the FWER in multiple hypotheses statistical testing
Rademacher chaos: promising extension to limited dependence sampling case

Online Rademacher avg.: extensions to non-stationary time-series analysis
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Thank you!

MATTEO RIONDATO Oteorionda http://matteo.rionda.to
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