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I. Data mining, sampling, and issues thereof
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What happens in data mining?

Given:
• Dataset D
• Family F of functions f : D → [a, b] ⊆ R

Goal: Compute mD(f ) = 1
|D|
∑

x∈D f (x), for each f ∈ F

Examples:
• D is a database, F is a family of SQL queries;
• D is a graph G = (V ,E ), F contains an fv for each v ∈ V

Issue: Exact computation of every mD(f ), f ∈ F , is too expensive on large datasets
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What should we aim for?

Intuition: in many applications, high-quality approximations are sufficient

Definition (ε-approximation)
Given ε ∈ (0, 1), a ε-approximation to F on D is a collection

B̃ = {m̃(f ), f ∈ F}
such that

|m̃(f )−mD(f )| ≤ ε, for each f ∈ F

A definition with relative/multiplicative error is also possible
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How can we get a ε-approximation?

Sampling!

How to proceed:

1 Define a probability distribution π on D
2 Create a sample S by sampling enough points independently from D according to π
3 Compute m̃(f ) on S, usually as mS(f ) = 1

|S|
∑

x∈S f (x)

We need:

1 A suitable π
2 An efficient sampling scheme
3 A sample size |S|, sufficient for B̃ to be an ε-approximation, with prob. ≥ 1− δ

. . . or a stopping condition to understand whether S is large enough
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Isn’t it obvious how to do it?

We want to compute a quantity ` such that

Pr (∃f ∈ F s.t. |mS(f )−mD(f )| > ε) < δ

The probability is taken over all samples of size `.

Idea: Use tail bounds for a single f , and then the union bound over F

(Spoiler: It won’t be that easy)
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Let’s make an example

Let each f = fA ∈ F be the indicator function for some property A
(f (x) = 1 if x ∈ D satisfies A, 0 othw.)

Then mD(f ) is a proportion and |S|mS(f ) has a Binomial distribution B(|S|,mD(f ))
Apply the Chernoff bound and then the union bound over F :

Pr (∃f ∈ F s.t. |mS(f )−mD(f )| > ε) ≤
∑
f ∈F

Pr (|mS(f )−mD(f )| > ε)

≤ |F|2 exp
(
−|S|ε2/3

)
For the r.h.s. to be at most δ, it must be

|S| ≥ 3
ε2

(
ln |F|+ ln 1

δ

)
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What’s disappointing with this sample size?

|S| ≥ 3
ε2

(
ln |F|+ ln 1

δ

)

1. F may be infinite. E.g., in the classification setting:
x = (w , y), y ∈ {0, 1}, and fθ(x) is the loss of a classifier cθ on x , θ ∈ Θ ⊆ R`

(S is the training set, |mS(f )−mD(f )| is the generalization error)

2. The sample size does not depend on any characteristic of D
E.g., on properties of the graph G = D
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Why should we want such dependency on D?

To let the data speak!

For a fixed F , computing an ε-approximation to F may be more difficult on D1 than
on D2;

D can give information on the sample complexity of computing an ε-approximation

“ln |F|” is a rough measure of complexity of the task, as it ignores D
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Are there better measures of sample complexity?
Yes! Statistical learning theory is “all” about them:

VC-dimension, pseudodimension, covering numbers, Rademacher averages, . . .
They allow to replace “ln |F|” with g(F ,D) or even g(F ,S): let the data speak!
Challenges:

1) Developed for supervised learning;
2) Long-standing reputation of being only of theoretical interest;
3) Not exactly straightforward to interpret, compute, bound

:

sup
f ∈F
|mS(f )−mD(f )| ≤ 2Eλ

[
sup
f ∈F

1
`

∑̀
i=1

λi f (xi )
]

+

√
ln 3

δ

2`

Appeal:

Elegant, insightful theory: “Nothing is more practical than a good theory.”
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II. Rademacher Averages
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What are Rademacher averages?

A binary r.v. λ has a Rademacher distribution if Pr(λ = 1) = Pr(λ = −1) = 1/2

Let ` = |S| and let λ1, . . . , λ` be ` independent Rademacher r.v.’s.

Definition (Rademacher Average)
The Rademacher average of F is

R`(F) = ES,λ

[
max
f ∈F

1
`

∑̀
i=1

λi f (xi )
]

Rademacher averages enjoy enormous success in statistical learning theory
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How do we get to such weird definition?
We have

Pr (∃f ∈ F s.t. |mS(f )−mD(f )| > ε) = Pr
(

max
f ∈F
|mS(f )−mD(f )| > ε

)
= Pr

(
max
f ∈F

[mS(f )−mD(f )] > ε

)
+ Pr

(
max
f ∈F

[mD(f )−mS(f )] > ε

)
Let’s look at

ES
[

max
f ∈F

[mS(f )−mD(f )]
]

= ES
[

max
f ∈F

[mS(f )− ES [mS(f )]]
]

Theorem

ES
[

max
f ∈F

[mS(f )− ES [mS(f )]]
]
≤ 2R`(F)
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Proof idea
Let S ′ = {x ′1, . . . , x ′`} be a second sample, independent from S

ES
[

max
f ∈F

[mS(f )− ES [mS(f )]]
]

= ES
[

max
f ∈F

[mS(f )− ES′ [mS′(f )]]
]

(Jensen’s Inequality) ≤ES,S′
[

max
f ∈F

[mS(f )−mS′(f )]
]

≤ES,S′
[

max
f ∈F

[
1
`

∑̀
i=1

f (xi )−
1
`

∑̀
i=1

f (x ′i )
]]

≤ ES,S′,λ

[
max
f ∈F

[
1
`

∑̀
i=1

λi
(
f (xi )− f (x ′i )

)]]

≤ ES,λ

[
max
f ∈F

[
1
`

∑̀
i=1

λi f (xi )
]]

+ ES′,λ

[
max
f ∈F

[
1
`

∑̀
i=1

λi f (x ′i )
]]

≤ 2R`(F)
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Where do we go from here?

Theorem (McDiarmid’s inequality)
Let X1, . . . ,X` be independent random variables and let h(x1, . . . , x`) be a function
s.t. a change in variable xi can change the value of the function by no more than ci :

sup
x1,...,x`,x ′i

∣∣h(x1, . . . , xi , . . . , x`)− h(x1, . . . , x ′i , . . . , x`)
∣∣ ≤ ci .

Then, for any ε > 0

Pr (h(X1, . . . ,X`)− E[h(X1, . . . ,X`)] > ε) ≤ exp
(
−2ε2

/∑̀
i=1

c2
i

)
.
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How do we use McDiarmid’s inequality?

Recall the bounded differences condition from McDiarmid’s inequality:

sup
x1,...,x`,x ′i

∣∣h(x1, . . . , xi , . . . , x`)− h(x1, . . . , x ′i , . . . , x`)
∣∣ ≤ ci .

The function h(x1, . . . , x`) = h(S) = maxf ∈F [mS(f )−mD(f )]
satisfies the condition with ci = |b−a|

` (in the rest of the talk we assume |b − a| = 1)

The same holds for the function h(x1, . . . , x`) = h(S) = Eλ
[
maxf ∈F

1
`

∑`
i=1 λi f (xi )

]
This function is the empirical Rademacher average of F on S.

We denote it with RS(F). Its expectation is R`(F).
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Let’s put everything together
Let’s start from

E
[

max
f ∈F

[mS(f )−mD(f )]
]
≤ 2R`(F)

Now apply McDiarmid to maxf ∈F [mS(f )−mD(f )]. With probability ≥ 1− δ/3:

max
f ∈F

[mS(f )−mD(f )] ≤ 2R`(F) +

√
ln 3

δ

`

Now apply McDiarmid to RS(F). With probability at least ≥ 1− 2δ/3:

max
f ∈F

[mS(f )−mD(f )] ≤ 2RS(F) + 3

√
ln 3

δ

`

Applying McDiarmid to maxf ∈F [mD(f )−mS(f )]. With probability at least ≥ 1− δ:

max
f ∈F
|mS(f )−mD(f )| ≤ 2RS(F) + 3

√
ln 3

δ

`
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Formally. . .

Theorem
Let S be a fixed sample of size `. With probability at least 1− δ,

max
f ∈F
|mS(f )−mD(f )| ≤ 2RS(F) + 3

√
ln 3

δ

`

The quantity on the r.h.s. depends only on the sample S.

We can compute the “quality” of a sample from the sample itself!

. . . but how do we compute RS(F)?
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How do we compute RS(F)?
Given S, define, for each f ∈ F ,

vf = (f (x1), . . . , f (x`))

Consider the set
VS = {vf , f ∈ F}

If the co-domain of the functions f ∈ F is finite, then VS is finite
Then |VS | ≤ |F|, and usually |VS � |F|.

Theorem (Massart’s Finite Class Lemma)

RS(F) ≤ max
v∈VS

‖v‖2
√
2 ln |VS |
`

If we can keep track of VS , or bound the max. ‖ · ‖2, we have a bound to RS(F).
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Why does it make sense?

RS(F) = Eλ

[
max
f ∈F

1
`

∑̀
i=1

λi f (xi )
]

Assume F contains classifiers from R to {−1, 1}.
Assume that λ1, . . . , λ` are the labels of training set S. Then

λi f (xi , λi ) = 1

when f correctly classifies xi . −1 otherwise.
RS(F) is high when, for any labeling λ1, . . . , λ`, there is a function f ∈ F that
correctly classify many points of the training set.
If this is the case, then F can essentially fit ` random noise points, so it is a rich class
Thus, learning the “correct” classifier requires more training points
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Recap and comments

Rade.Avg. allow to compute a bound to the maximum deviation from the sample

For ε-approximation, keep sampling until the bound is less than ε (caveats)

Keeping track of VS is not always straightforward, but it’s the key task

The bounds presented here have much tighter variants

There are relative/multiplicative error variants
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III. Betweenness centrality estimation with Rademacher Averages
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What am I going to talk about?

ABRA: A sampling-based algorithm for betweenness centrality estimation on static and
dynamic graphs. Its analysis uses Rademacher averages.

Joint work with Eli Upfal (Brown);

ACM KDD’16;

Journal under submission,
http://bit.ly/abra-betweenness.

ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages

Matteo Riondato
Two Sigma Investments

New York, NY, USA
matteo@twosigma.com

Eli Upfal
Dept. of Computer Science – Brown University

Providence, RI, USA
eli@cs.brown.edu

ABRAXAS (ABRAXAS): Gnostic word of mystic meaning
ABSTRACT
We present ABRA, a suite of algorithms that compute and
maintain probabilistically-guaranteed, high-quality, approx-
imations of the betweenness centrality of all nodes (or edges)
on both static and fully dynamic graphs. Our algorithms
rely on random sampling and their analysis leverages on
Rademacher averages and pseudodimension, fundamental
concepts from statistical learning theory. To our knowledge,
this is the first application of these concepts to the field of
graph analysis. The results of our experimental evaluation
show that our approach is much faster than exact meth-
ods, and vastly outperform, in both speed and number of
samples, current state-of-the-art algorithms with the same
quality guarantees.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; H.2.8 [Database Management]: Database Ap-
plications—Data mining

Keywords
centrality; pseudodimension; sampling;

1. INTRODUCTION
Centrality measures are fundamental concepts in graph

analysis, as they assign to each node or edge in the net-
work a score that quantifies some notion of importance of
the node/edge in the network [20]. Betweenness Centrality
(bc) is a very popular centrality measure that, informally,
defines the importance of a node or edge z in the network as
proportional to the fraction of shortest paths in the network
that go through z [2, 12].

Brandes [9] presented an algorithm (denoted BA) that
computes the exact bc values for all nodes or edges in a
graph G = (V,E) in time O(|V ||E|) if the graph is un-
weighted, and time O(|V ||E| + |V |2 log |V |) if the graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’16, August 24–27, 2016, San Francisco, CA, USA
c• 2016 ACM. ISBN XXX-X-XXXX-XXXX-X/16/08 ...$15.00.

DOI: http://dx.doi.org/XX.XXXX/XXXXXXX.XXXXXXX .

has positive weights. The cost of BA is excessive on mod-
ern networks with millions of nodes and tens of millions of
edges. Moreover, having the exact bc values may often not
be needed, given the exploratory nature of the task, and a
high-quality approximation of the values is usually su�cient,
provided it comes with stringent guarantees.

Today’s networks are not only large, but also dynamic:
edges are added and removed continuously. Keeping the
bc values up-to-date after edge insertions and removals is a
challenging task, and proposed algorithms [14, 16–18] have
a worst-case complexity and memory requirements which
is not better than from-scratch-recomputation using BA.
Maintaining an high-quality approximation up-to-date is more
feasible and more sensible: there is little added value in keep-
ing track of exact bc values that change continuously.

Contributions. We focus on developing algorithms for ap-
proximating the bc of all vertices and edges in static and
dynamic graphs. Our contributions are the following.
• We present ABRA (for “Approximating Betweenness with

Rademacher Averages”), the first family of algorithms based
on progressive sampling for approximating the bc of all
vertices in static and dynamic graphs, where vertex and
edge insertions and deletions are allowed. The approxima-
tions computed by ABRA are probabilistically guaranteed
to be within an user-specified additive error from their
exact values. We also present variants with relative (i.e.,
multiplicative)) error for the top-k vertices with highest
bc, and variants that use refined estimators to give better
approximations with a slightly larger sample size.

• Our analysis relies on Rademacher averages [27] and pseu-
dodimension [22], fundamental concepts from the field
of statistically learning theory [29]. Exploiting known
and novel results using these concepts, ABRA computes
the approximations without having to keep track of any
global property of the graph, in contrast with existing
algorithms [4, 6, 23]. ABRA performs only “real work”
towards the computation of the approximations, without
having to compute such global properties or update them
after modifications of the graph. To the best of our knowl-
edge, ours is the first application of Rademacher averages
and pseudodimension to graph analysis problems, and the
first to use progressive random sampling for bc computa-
tion. Using pseudodimension new analytical results on
the sample complexity of the bc computation task, gen-
eralizing previous contributions [23], and formulating a
conjecture on the connection between pseudodimension
and the distribution of shortest path lengths.
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What are the important nodes in a graph?

Let G = (V ,E ) be a graph with |V | = n nodes and |E | = m edges.
Question: Can we find the most important nodes in G?

I.e. (almost), can we rank the nodes by importance?
Prerequisite: Quantify the importance of a node through a numerical score.

Definition (Centrality measure)
A function f : V → R+ expressing the importance of a node.

The higher is f (x), the more important is x ∈ V .

Motivation: Find relevant webpages on the web, influential participants in a social
network, key concepts in a E-R graph, . . .

Examples: degree, PageRank, closeness, betweenness, . . .
Each centrality measure quantifies importance in a very specific way.
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What is betweenness centrality?

Intuition: Assume that
1) every node wants to communicate with every node; and
2) communication progresses along Shortest Paths (SPs).

Then, the higher the no. of SPs that a node v belongs to, the more important v is.

Definition (Betweenness Centrality (BC))
For each node x ∈ V , the betweeness b(x) of x is:

b(x) = 1
n(n − 1)

∑
u 6=x 6=v∈V

σuv (x)
σuv

∈ [0, 1]

• σuv : number of SPs from u to v , u, v ∈ V ;
• σuv (x): number of SPs from u to v that go through x .

Roughly: b(x): the weighted fraction of SPs that go through x , among all SPs in G .
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May I give an example?

a

h

b

g f e

c d

Node x a b c d e f g h
b(x) 0 0.250 0.125 0.036 0.054 0.080 0.268 0
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How do we compute it exactly for all vertices?
Brandes’s Algorithm (BA) [Brandes 2001]
For each vertex s ∈ V :

1) Build the SP DAG from s via Dijkstra/BFS;
2) Traverse the SP DAG from the most distant node towards s, in reverse order of

distance. During the walk, appropriately increment b(v) of each non-leaf node v
traversed.

Source s: 1

1

234

567

89

(update to b(v) not shown)
Time complexity: O(nm + n2 log n)

n Dijkstra’s, plus n backward walks,
taking at most n each

Too much even with just 104 nodes.
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What kind of approximation are we looking for?

Let b̃(x) denote a value that approximates b(x), x ∈ V .

Definition ((ε, δ)-approximation)
Let ε ∈ (0, 1), and δ ∈ (0, 1) be user-specified parameters;
An (ε, δ)-approximation is a set {b̃(x), x ∈ V } of n values such that

Pr(∃x ∈ V s.t. |b(x)− b̃(x)| > ε) ≤ δ .

I.e., with prob. ≥ 1− δ, for all x ∈ V , b̃(x) is within ε of b(x).

An (ε, δ)-approximation offers uniform probabilistic guarantees over all the nodes.

29 / 47



Are there algorithms to compute (ε, δ)-approximations?

Yes, they use random sampling, but of different “objects”:
•[Brandes and Pich 2007]: sampling of source nodes for BA uniformly at random;
•[R. and Kornaropoulos 2015]: sampling of SPs non-uniformly at random;

Note: they obtain approximations by performing fewer computations,
not by running BA on a smaller graph.

Key question in sampling algorithms:
How many samples does the algorithm need to obtain a (ε, δ)-approximation?

Answer:
•[Brandes and Pich 2007]: O

(
1
ε2

(
ln n + ln 1

δ

))
source nodes;

•[R. and Kornaropoulos 2015]: O
(

1
ε2

(
log2 D + ln 1

δ

))
SPs (D: diameter of G);
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What’s wrong with these algorithms?

[Brandes and Pich 2007]:
•the sample size does not depend on the edge structure of G , only on n;
•lots of work per sample (SSSP, i.e., full exploration of the graph).

[R. and Kornaropoulos 2015]:
•the sample size is derived by considering the worst-case graph of diameter D;
•lots of wasted work per sample (s − t SP computation, but a single SP is used);
•must compute an upper bound to the diameter before sampling can start.

Our algorithm, ABRA, solves these issues.
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How does ABRA solve these issues?

ABRA computes an (ε, δ)-approximation using progressive random sampling.

ABRA in two lines (details later)
•ABRA immediately starts sampling, computing the approximation as it goes.
•At predefined intervals, ABRA checks a stopping condition to understand, using the

sample, whether the current approximation has the desired quality.

The analysis of correctness uses Rademacher averages and pseudodimension.

Challenge
The stopping condition must be fast to check and satisfied at small sample sizes
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Intuition from a Rademacher Average p.o.v.

D is the set of pairs of different nodes (u, v) in V :

D = {(u, v), (u, v) ∈ V × V , u 6= v}

Sample from D uniformly at random

F contains one function fw for each w ∈ V . fw : D → [0, 1]:

fw (u, v) = σuv (w)
σuv

ABRA keeps track of the set VS of vectors vfw , w ∈ V , and uses it to compute bounds
to the maximum deviations.
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How does ABRA work?

ABRA from 30,000 ft:
Input: G , ε, δ, sample schedule (Si )i≥1
Output: (ε, δ)-approximation

T ← set of triples (r1 ∈ R, r2 ∈ R,C ⊆ V )), initially containing only (0, 0,V );
b̃(x)← 0, for all x ∈ V ; i ← 1, S0 ← 0
At iteration i :
For j ← 1 to Si − Si−1:
1) Sample a pair (u, v) of nodes uniformly at random from V × V ;
2) Get the SP DAG from u to v (Dijkstra/BFS);
3) Increment b̃(x) by σuv (x)/σuv for all x ∈ V internal to the SP DAG;
4) Update T ; // stay tuned

Check a stopping condition using T ; // stay tuned
If the stopping condition is satisfied, then output {b̃(x)/Si , x ∈ V }, else iterate;
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How does ABRA really work?
1) Sample a pair (u, v) of nodes uniformly at random from V × V ;
2) Get the SP DAG from u to v (Dijkstra/BFS);
3) Increment b̃(x) by σuv (x)/σuv for all x ∈ V internal to the SP DAG;
4) Update T ;

1

234

567

89

Sampled pair: (1, 8) SPs: σ1,8 = 3

Node v b̃(v)
1 1
2 1/2
3 1/2
4 0
5 1
6 1/2
7 1/2
8 1/2
9 0
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What is T ?

Assume to observe ABRA after it has sampled k pairs of nodes: (u1, v1), . . . , (uk , vk).

For any x ∈ V , let vx =
(
σu1,v1 (x)
σu1v1

, . . . ,
σuk vk (x)
σuk vk

)
;

Let Vk = {vx , x ∈ V }. There may be distinct nodes x and y s.t. vx = vy ;
Vk induces a partitioning of V into classes Cv indexed by the elements of Vk .

T contains one and only one element (‖v‖1, ‖v‖2,Cv) for each class Cv in the
partitioning. At the start, all nodes belong to one class, and T = {(0, 0,V )}
As ABRA takes more samples, the partitioning is refined, and T changes;

ABRA leverages properties of the refining process to track the partitioning efficiently.
T is updated efficiently after each sample.
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What is the stopping condition?

ABRA outputs the approximations (b̃(x))x∈V when the stopping condition is satisfied.

The stopping condition:
1 uses T to obtain r = maxv∈VS ‖v‖ and |VS |;
2 then uses r |VS | in Massart’s Lemma to compute an upper bound ω to RS(F);
3 then uses ω and δ to obtain a bound ξ to maxx∈V |b̃(x)− b(x)|.
4 and finally checks whether ξ ≤ ε.

Key Theorem: The output is a (ε, δ)-approximation.

Caveat: Need union bound over all possible iterations, so at iteration i use δ′ = δ/2i
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Will ABRA ever stop sampling?

Yes, it will.

Theorem
Let θ be the size of the largest Weakly Connected Component in G.
After having sampled

1
ε2 (log2 θ + ln(1/δ))

pairs of nodes, then ABRA can stop: the output will be an (ε, δ)-approximation.

Intuition:
log2 θ is an upper bound to the pseudodimension of the problem.

(pseudodimension: VC-dimension for real-valued functions).
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Can we do better?

The bound to the pseudodimension is disappointing: for a connected G , θ = log2 |V |.
We could get the same result with a simple union bound.

Conjecture
Let G be a graph and let κ be the maximum positive integer for which there exists a
set L = {(u1, v1), . . . , (uκ, v`)} of ` distinct pairs of distinct vertices such that

κ∑
i=1

σui vi ≥
(

`

b`/2c

)
then the pseudodimension is at most κ.

E.g., if there is at most 1 SP between each pair of nodes (road networks), then
pseudodimension is at most 3.
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Is the conjecture tight?
The conjecture is tight at least up to κ = 4.
This graph satisfies the conjecture for κ = 4 and has pseudodimension d = 4:

21/25

Tightness of conjecture
The conjecture is tight up to ¸ = 4:

This graph satisfies the conjecture for ¸ = 4 and has
pseudodimension d = 4:

XX:18 M. Riondato and E. Upfal

— Assume now that wi,4 and wj,4 are on the same SP from u4 to v4 but wi,j,4 is on the
other SP from u4 to v4 (by hypothesis there are only two SPs from u4 to v4). Since what
we show in the previous point must be true for all choices of i and j, we have that all
nodes wh,4, 1 Æ h Æ 3, must be on the same SP from u4 to v4, and all nodes in the form
wi,j,4, 1 Æ i < j Æ 3 must be on the other SP from u4 to v4. Consider now these three
nodes, w1,2,4, w1,3,4, and w2,3,4 and consider their ordering along the SP from u4 to v4
that they lay on. No matter what the ordering is, there is an index h œ {1, 2, 3} such
that the SP ph must go through the extreme two nodes in the ordering but not through
the middle one. But this would contradict fact F1, so it is impossible that we have wi,4
and wj,4 on the same SP from u4 to v4 but wi,j,4 is on the other SP, for any choice of i
and j.
We showed that the nodes wi,4 and wj,4 can not be on the same SP from u4 to v4. But

this is true for any choice of the unordered pair (i, j) and there are three such choices, but
only two SPs from u4 to v4, so it is impossible to accommodate all the constraints requiring
wi,4 and wj,4 to be on di�erent SPs from u4 to v4. Hence we reach a contradiction and B
can not be shattered.

The bound in Thm. 4.7 is tight, i.e., there exists a graph for which the pseudodimension
is exactly 3 [Riondato and Kornaropoulos 2015, Lemma 4]. Moreover, as soon as we relax
the requirement in Thm. 4.7 and allow two pairs of nodes to be connected by two SPs, there
are graphs with pseudodimension 4, as shown in the following Lemma.

Lemma 4.10. There is an undirected graph G = (V,E) such that there is a set
{(ui, vi), ui, vi œ V, ui �= vi, 1 Æ i Æ 4} with |Su1,v1 | = |Su2,v2 | = 2 and |Su3,v3 | = |Su4,v4 | = 1
that is shattered.
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Fig. 1: Graph for Thm. 4.10

ACM Journal Name, Vol. XX, No. X, Article XX, Publication date: June 2016.

40 / 47



How does ABRA perform in practice?

Great!

Implementation: C++, extension of NetworKit.

Datasets: from SNAP (Soc-Epinions1, P2p-Gnutella, Email-Enron, Cit-HepPh).

Accuracy: Maximum error was always < ε, Avg. and min. errors were � ε.

Final Sample Size:
O(25 · 104) for ε = 0.01, O(103) for ε = 0.03 (varies across graphs);
Smaller than RK (≈ 2x to 4x fewer samples).

Runtime:
Faster than BA (≈ 5x for ε = 0.01, ≈ 40x for ε = 0.03);
Faster than RK (≈ 3x for ε = 0.01, ≈ 6x for ε = 0.03).
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Did we do our homework?
This slide is close to unreadable on purpose.

Speedup
w.r.t.

Runtime
Breakdown (%) Absolute Error (×105)

Graph ε
Runtime

(sec.) BA RK Sampling
Stop
Cond. Other

Sample
Size

Reduction
w.r.t.
RK max avg stddev

Soc-Epinions1
Directed

|V | = 75, 879
|E | = 508, 837

0.005 483.06 1.36 2.90 99.983 0.014 0.002 110,705 2.64 70.84 0.35 1.14
0.010 124.60 5.28 3.31 99.956 0.035 0.009 28,601 2.55 129.60 0.69 2.22
0.015 57.16 11.50 4.04 99.927 0.054 0.018 13,114 2.47 198.90 0.97 3.17
0.020 32.90 19.98 5.07 99.895 0.074 0.031 7,614 2.40 303.86 1.22 4.31
0.025 21.88 30.05 6.27 99.862 0.092 0.046 5,034 2.32 223.63 1.41 5.24
0.030 16.05 40.95 7.52 99.827 0.111 0.062 3,668 2.21 382.24 1.58 6.37

P2p-Gnutella31
Directed

|V | = 62, 586
|E | = 147, 892

0.005 100.06 1.78 4.27 99.949 0.041 0.010 81,507 4.07 38.43 0.58 1.60
0.010 26.05 6.85 4.13 99.861 0.103 0.036 21,315 3.90 65.76 1.15 3.13
0.015 11.91 14.98 4.03 99.772 0.154 0.074 9,975 3.70 109.10 1.63 4.51
0.020 7.11 25.09 3.87 99.688 0.191 0.121 5,840 3.55 130.33 2.15 6.12
0.025 4.84 36.85 3.62 99.607 0.220 0.174 3,905 3.40 171.93 2.52 7.43
0.030 3.41 52.38 3.66 99.495 0.262 0.243 2,810 3.28 236.36 2.86 8.70

Email-Enron
Undirected
|V | = 36, 682
|E | = 183, 831

0.010 202.43 1.18 1.10 99.984 0.013 0.003 66,882 1.09 145.51 0.48 2.46
0.015 91.36 2.63 1.09 99.970 0.024 0.006 30,236 1.07 253.06 0.71 3.62
0.020 53.50 4.48 1.05 99.955 0.035 0.010 17,676 1.03 290.30 0.93 4.83
0.025 31.99 7.50 1.11 99.932 0.052 0.016 10,589 1.10 548.22 1.21 6.48
0.030 24.06 9.97 1.03 99.918 0.061 0.021 7,923 1.02 477.32 1.38 7.34

Cit-HepPh
Undirected
|V | = 34, 546
|E | = 421, 578

0.010 215.98 2.36 2.21 99.966 0.030 0.004 32,469 2.25 129.08 1.72 3.40
0.015 98.27 5.19 2.16 99.938 0.054 0.008 14,747 2.20 226.18 2.49 5.00
0.020 58.38 8.74 2.05 99.914 0.073 0.013 8,760 2.08 246.14 3.17 6.39
0.025 37.79 13.50 2.02 99.891 0.091 0.018 5,672 2.06 289.21 3.89 7.97
0.030 27.13 18.80 1.95 99.869 0.108 0.023 4,076 1.99 359.45 4.45 9.53 42 / 47



Did we really do our homework?
This slide is close to unreadable on purpose.

(a) P2p-Gnutella (b) Email-Enron (c) Soc-Epinions1 (d) Cit-HepPh

(a) P2p-Gnutella (b) Email-Enron (c) Soc-Epinions1 (d) Cit-HepPh
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To sum up. . .

ABRA is an algorithm to estimate betweenness centrality of all nodes

It uses progressive random sampling of pairs of nodes, plus BFS/Dijkstra for each pair

It keeps track of VS as it samples

The analysis relies on Rademacher averages

It is very fast, showing the practicality of Rademacher averages
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IV. Conclusions
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To sum up. . .

Rademacher averages: a very powerful tool for analyzing sampling algorithms

They are efficient in practice, no longer only of theoretical interest

We also used them for other key tasks in data analysis, e.g., frequent pattern mining

They can also be used to control the FWER in multiple hypotheses statistical testing

Rademacher chaos: promising extension to limited dependence sampling case

Online Rademacher avg.: extensions to non-stationary time-series analysis
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Thank you!

Matteo Riondato @teorionda http://matteo.rionda.to
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