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Abstract. Efficient reasoning about strings is essential to a growing number of
security and verification applications. We describe satisfiability checking tech-
niques in an extended theory of strings that includes operators commonly occur-
ring in these applications, such as contains, index of and replace. We introduce
a novel context-dependent simplification technique that improves the scalability
of string solvers on challenging constraints coming from real-world problems.
Our evaluation shows that an implementation of these techniques in the SMT
solver CVC4 significantly outperforms state-of-the-art string solvers on bench-
marks generated using PyEx, a symbolic execution engine for Python programs.
Using a test suite sampled from four popular Python packages, we show that
PyEx uses only 41% of the runtime when coupled with CVC4 than when coupled
with CVC4’s closest competitor while achieving comparable program coverage.

1 Introduction

A growing number of applications of static analysis techniques have benefited from
automated reasoning tools for string constraints. The effect of such tools on symbolic
execution in particular has been transformative. At a high level, symbolic execution
runs a program under analysis by representing its input values symbolically and track-
ing the program variables as expressions over these symbolic values, together with other
concrete values in the program. The collected expressions are then analyzed by an au-
tomated reasoning tool to determine path feasibility at branches or other properties
such as security vulnerabilities at points of interest. With the ever-increasing hardware
and automated reasoning capabilities, symbolic execution has enjoyed much success in
practice. A recent example in the cybersecurity realm was the DARPA Cyber Grand
Challenge,5 which featured a number of Cyber Reasoning Systems that heavily relied
on symbolic execution techniques (see, e.g., [7, 24]).

Prior to the availability of string-capable reasoning tools, developers of symbolic
execution engines had to adopt various ad-hoc heuristics to cope with strings and other
variable-length inputs. One popular heuristic is to impose an artificial upper-bound on
the length of these inputs. Unfortunately, this not only compromises analysis accuracy,

5 See http://www.darpa.mil/program/cyber-grand-challenge .
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since the chosen upper bounds may be too low in face of adversarial inputs, but it
also leads to inefficiencies in solvers when practitioners, in an attempt to mitigate this
problem, may end up setting the upper bounds too high. To address this issue, a number
of SMT solvers have been extended recently with native support for unbounded strings
and length constraints [30, 19, 2, 26]. These solvers have dramatically improved both
in performance and robustness over the past few years, enabling a new generation of
symbolic execution tools that support faithful string reasoning.

This paper revisits approaches for solving extended string constraints, which allow
a rich language of string terms over operators such as contains, index of and replace.
Earlier techniques for extended string constraints [5, 18, 30, 27] often rely on eager
reductions to a core language of constraints, with the effect of requiring the solver to
deal with fairly large or complex combination of basic constraints. For instance, encod-
ing the constraint  containspx, yq commonly involves bounded universal quantifica-
tion over the integers, to state that string y does not occur at any position in x. In this
work, we start with the observation that DPLL(T)-based SMT solvers [12] often reason
in contexts where string variables are equated to (partially) concrete values. Based on
this, we have developed a way to leverage efficient context-dependent simplification
techniques and reduce extended constraints to a core language lazily instead.

Contribution and significance We extend a calculus by Liang et al. [19] to handle
extended string constraints (i.e. constraints over substr, contains, index of and replace)
using a combination of two techniques:

– a reduction of extended string constraints to basic ones involving bounded quantifi-
cation (Section 3.1), and

– an inference technique based on context-dependent simplification (Section 3.2)
which supplements this reduction and in practice significantly improves the scala-
bility of our approach on constraints coming from symbolic execution.

Additionally, we provide a new set of 25,421 publicly-available benchmarks over
extended string constraints. These benchmarks were generated by running PyEx, a new
symbolic executor for Python programs based on PyExZ3 [3], over a test suite of 19 tar-
get functions sampled from four popular Python packages. We discuss an experimental
evaluation showing that our implementation in the SMT solver CVC4 significantly out-
performs other state-of-the-art string solvers in finding models for these benchmarks.

Finally, we discuss how the superior performance of CVC4 in comparison to other
solvers translates into real-life benefits for Python developers using PyEx.

Structure of the paper After some formal preliminaries, we briefly review a calcu-
lus for basic string constraints in Section 2 that is an abbreviated version of [19]. We
present new techniques for extended string constraints in Section 3, and evaluate these
techniques on real-world queries generated by PyEx in Section 5.

1.1 Related work

The satisfiability of word equations was proven decidable by Makanin [21] and then
given a PSPACE algorithm by Plandowski [22]. The decidability of the fairly restricted
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language of word equations with length constraints is an open problem [11]. In practice,
a number of approaches for solving string and regular expression constraints rely on re-
ductions to automata [10, 15, 28] or bit-vector constraints for fixed-length strings [16].
More recently, new approaches have been developed for the satisfiability problem for
(unbounded) word equations and memberships with length [30, 19, 27, 2, 20] within
SMT solvers. Among these, Z3-STR [30] and S3 [27] are third-party extensions of the
SMT solver Z3 [9] adding support for string constraints via reductions to linear arith-
metic and uninterpreted functions. This support includes extended string constraints
over a signature similar to the one we consider in this paper. With respect to these
solvers, our string solver is fully integrated into the architecture of CVC4, meaning it
can be combined with other theories of CVC4, such as algebraic datatypes and arrays.

This paper is similar in scope to work by Bjørner et al. [5], which gives decidabil-
ity results and an approach for string library functions, including contains and replace.
As in that work, we reduce the satisfiability problem for extended string constraints to
a core language with bounded quantification. We also incorporate simplification tech-
niques that improve performance by completely or partially avoiding this reduction.

Our target application, symbolic execution, has a rich history, starting from the sem-
inal work of King [17]. Common modern symbolic execution tools include SAGE [13],
KLEE [6], S2E [8], and Mayhem [7], which are all designed to analyze low-level bi-
nary or source code. In contrast, this paper considers constraints generated from the
symbolic executor PyEx, which is designed to analyze Python code and includes sup-
port for string variables.

1.2 Formal preliminaries

We work in the context of many-sorted first-order logic with equality and assume the
reader is familiar with the notions signature, term, literal, (quantified) formula, and free
variable. We consider many-sorted signatures Σ that contain an (infix) logical symbol
« for equality—which has type σ ˆ σ for all sorts σ in Σ and is always interpreted as
the identity relation. We also assume signatures Σ contain the Boolean sort Bool and
Boolean constant symbols J and K for true and false. Without loss of generality, we
assume « is the only predicate symbol in Σ, as all other predicates may be modeled
as functions with return sort Bool. If P is a function with return sort Bool, we will
commonly write P ptq as shorthand for P ptq « J. If e is a term or a formula, we denote
by Vpeq and T peq the set of free variables and subterms of e respectively, extending
these notations to tuples and sets of terms or formulas as expected.

A theory is a pair T “ pΣ, Iq where Σ is a signature and I is a class of Σ-
interpretations, the models of T . AΣ-formula ϕ is satisfiable (resp., unsatisfiable) in T
if it is satisfied by some (resp., no) interpretation in I. A set Γ of Σ-formulas entails in
T aΣ-formula ϕ, written Γ |ùT ϕ, if every interpretation in I that satisfies all formulas
in Γ satisfies ϕ as well. We write Γ |ù ϕ to denote entailment in the (empty) theory of
equality. We say Γ propositionally entails ϕ, written Γ |ùp ϕ, if Γ entails ϕ when con-
sidering all atoms in γ and ϕ as propositional variables. Two Σ-terms or Σ-formulas
are equivalent in T if they are satisfied by the same models of T . Two formulas ϕ1 and
ϕ2 are equisatisfiable in T if Dx1. ϕ1 and Dx2. ϕ2 are equivalent in T where xi collects
the free variables of ϕi that do not occur free in ϕj with i ‰ j.
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ΣA n : Int for all n P N ` : Intˆ IntÑ Int ´ : IntÑ Int ě : Intˆ IntÑ Bool

ΣS l : Str for all l P A˚ con : Str ˆ ¨ ¨ ¨ ˆ StrÑ Str len : StrÑ Int

ΣX
substr : Str ˆ Intˆ IntÑ Str contains : Str ˆ StrÑ Bool
index of : Str ˆ Str ˆ IntÑ Int replace : Str ˆ Str ˆ StrÑ Str

Fig. 1. Functions in signature ΣASX. Str and Int denote strings and integers respectively.

We consider an extended theory TASX of strings and length equations, whose sig-
nature ΣASX is given in Figure 1. We assume a fixed finite alphabet A of characters.
The signature includes the sorts Str and Int denoting strings and integers respectively.
Figure 1 divides the signature ΣASX into three parts, which we denote by ΣA, ΣS and
ΣX. We will write ΣAS to denote ΣA YΣS and so on. The subsignature ΣA is provided
on the top line of Figure 1 and includes the usual symbols of linear integer arithmetic,
interpreted as expected. We will commonly write t1 ’ t2, with ’ P tą,ă,ďu, as syn-
tactic sugar for the equivalent inequality between t1 and t2 expressed using only ě.
The subsignature ΣS is provided on the second line and includes: a constant symbol,
or string constant, for each word of A˚ (including ε for the empty word), interpreted as
that word; a variadic function symbol con : Str ˆ . . .ˆ StrÑ Str, interpreted as word
concatenation; and a function symbol len : Str Ñ Int, interpreted as the word length
function. The subsignature ΣX is provided in the remainder of the figure.

We refer to the function symbols in ΣX as extended functions, and terms whose top
symbol is is inΣX as extended function terms. A position in a string x is a non-negative
integer smaller than the length of x that identifies a character in x — with 0 identifying
the first character, 1 the second, and so on. For all x, y, z, n,m, the term substrpx, n,mq
is interpreted as the maximal substring of x starting at position n with length at most
m, or the empty string if n is an invalid position; containspx, yq is interpreted as true
if and only if x contains y; index ofpx, y, nq is interpreted as the position of the first
occurrence of y in x starting at position n, or ´1 if y is empty, n is an invalid position,
or if no such occurrence exists; replacepx, y, zq is interpreted as the result of replacing
the first occurrence in x of y by z, or just x if y is empty or x does not contain y.

An atomic term is either a constant or a variable. A flat term is a term of the
form fpx1, . . . , xnq, where x1, . . . , xn are variables. A string term is one that con-
tains function symbols from ΣSX only. A string term is basic if contains function sym-
bols from ΣS only, and extended otherwise. A (basic, extended) string constraint is
a (dis)equality between (basic, extended) string terms. An arithmetic constraint is an
inequality or (dis)equality between linear combinations of atomic and/or string terms
with integer sort. Notice that (dis)equalities between integer variables and constraints
such as lenx « len y are both string and arithmetic constraints. A TASX-constraint is
either a string or an arithmetic constraint. Without loss of generality, we consider the
satisfiability problem for ΣASX-formulas composed of TASX-constraints only.

If E is a finite set of basic string constraints, the congruence closure of E is the set
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conps, ε,uq Ñ conps,uq conpq Ñ ε conpsq Ñ s
conps, conptq,uq Ñ conps, t,uq conps, c1 ¨ ¨ ¨ ci, ci`1 ¨ ¨ ¨ cn,uq Ñ conps, c1 ¨ ¨ ¨ cn,uq

lenpc1 ¨ ¨ ¨ cnq Ñ n lenpconps1, . . . , snqq Ñ len s1 ` ¨ ¨ ¨ ` len sn

Fig. 2. Simplification rules for ΣAS-terms.

pE “ ts « t | s, t P T pEq, E |ù s « tu Y

ts ff t | s, t P T pEq, s1 ff t1 P E Y L, E |ù s « s1 ^ t « t1 for some s1, t1u

where L “ tl1 ff l2 | for all distinct l1, l2 P A˚u Y tJ ff Ku. The congruence closure
of E induces an equivalence relation over T pEq where two terms s, t are equivalent iff
s « t P pE. For all t P T pEq, we denote its equivalence class in pE by rtsE or just rts
when E is clear.

Given a term t, we write tÓ to denote its simplified form, where tÓ is a term that
is equivalent to t in TASX and is not simplifiable further (i.e., ptÓqÓ “ tÓ). We do
not insist that simplified forms be canonical, that is, equivalent terms need not have
the same simplified form. Rules for computing the simplified form of ΣAS-terms are
given in Figure 2. Rules for computing the simplified form of other ΣASX-terms are
fairly sophisticated and will be described in detail in Section 3.2. Given a tuple of basic
string terms t, we write tÓ to denote a tuple of atomic string terms corresponding to the
arguments of conptqÓ. For example, if c1, c2 P A, pc1, conpc2, xq, yqÓ “ pc1c2, x, yq
and px, εqÓ “ pxq. Given an arbitrary ΣASX-formula ϕ, we write tϕu to denote an
equisatisfiable (purified) formula whose atoms are TASX-constraints, and where t is in
simplified form (i.e., t “ tÓ) for all its subterms t. For example, tsubstrpx, n0, n1`1q «
yu is substrpx, n0, n2q « y ^ n2 « n1 ` 1 for a fresh integer variable n2.

2 A Calculus for Basic String Constraints

Liang et al. [19] developed a calculus for the satisfiability of finite conjunctions of con-
straints in a theory of strings with length and regular expressions. This section presents
a modified version of that calculus. We focus on the portion of that calculus that han-
dles string equalities and length constraints, and omit discussion of its other aspects.
Furthermore, we extend that calculus with support for constraints involving extended
functions. To simplify the description of this extension and make it self-contained, we
also extend the calculus to model propositional reasoning as well, making it applicable
to ΣASX-formulas instead of just conjunctions of TASX-constraints.

Definition 1 (Configurations). A configuration is either the distinguished symbol unsat
or a tuple of the form xG,S,Ay where G is a set of ΣASX-formulas, A is a set of arith-
metic constraints, and S is a tuple of the form pE,X,F,Nq, where:

– E is a set of basic string equalities;
– X is a set of equalities of the form x « t, where x is a variable and t is a flat

extended function term;
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Prop-Assign
G “ G1, ϕ ϕ is quantifier-free

‖M |ùpϕ G :“ G1 S :“ S‘M |S A :“ AYM |A
A-Conf

A |ùLIA K

unsat

A-Prop
S |ù s « t s, t : Int

A :“ A, s « t
S-Prop

A |ùLIA s « t s, t : Int

S :“ S‘ ts « tu
S-Conf

s ff s P pE

unsat

L-Eq
x « t P pE x : Str

A :“ A, lenx « plen tqÓ
L-Geq

x P VpSY Aq x : Str

S :“ S‘ tx « εu ‖ A :“ A, lenx ą 0

Fig. 3. Rules modeling the interaction between the propositional, string and arithmetic subsolvers.

– F is a set of pairs s ÞÑ a where s P T pEq and a is a tuple of atomic string terms;
– N is a set of pairs e ÞÑ a where e is an equivalence class of pE and a is a tuple of

atomic string terms. ˝

A configuration xG,S,Ay models the internal state of various modules of a DPLL(T)-
based solver. The component G collects the formulas being processed by the solver’s
propositional satisfiability (SAT) engine; S models the state of a theory solver for
strings; and A collects the constraints given to a solver for linear integer arithmetic.
Initial configurations have the form xtϕu,H,Hy where ϕ is a quantifier-free TASX-
formula to be checked for satisfiability andH abbreviates the tuple pH,H,H,Hq.

We describe a calculus for the satisfiability of string constraints by a set of deriva-
tion rules that modify configurations. The rules are given in guarded assignment form,
where the top of the rule describes the conditions under which the rule can be applied,
and the bottom of the rule either is unsat, or otherwise describes the resulting modifi-
cations to the components of our configuration. A rule may have multiple, alternative
conclusions separated by ‖. An application of a rule is redundant if it has a conclusion
where each component in the derived configuration is a subset of the corresponding
component in the premise configuration. A configuration other than unsat is saturated
if every possible application of a derivation rule to it is redundant. A derivation tree
is a tree where each node is a configuration whose children, if any, are obtained by a
non-redundant application of a rule of the calculus. A closed derivation tree (where all
terminal nodes are unsat) with root node xtϕu,H,Hy is a proof that ϕ is unsatisfiable
in TASX. A derivation tree with root node xtϕu,H,Hy and a saturated leaf is, under
certain assumptions (see Theorem 1) a witness that ϕ is satisfiable in TASX.

To discuss the rules, we first introduce the notation for updating the internal state
S “ pE,X,F,Nq of our string solver. Let M be a set of TASX-constraints. By in-
troducing enough fresh variables, we can construct an equisatisfiable set ME YMX

where ME is a set of ΣAS-literals and MX is a set of equalities of the form y « t,
with y a variable and t a flat extended function term. For simplicity, we assume here
that ME does not contain string disequalities.6 We define the external update of S with
M , written S ‘M , to be the tuple pE YME , X YMX ,H,Hq. For ΣAS-terms t1, t2,

6 String disequalities can be reduced to a finite disjunction of equalities, e.g. see [1]. More
sophisticated and efficient methods for handling string disequalities are given in [19].
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we define the internal update of S with t1 « t2, written S d t1 « t2, to be the tuple
pE Y tt1 « t2u, X, Fσ,Hq, where σ is the substitution tt1 ÞÑ t2u if t1 is a string
variable and is the empty substitution otherwise, and Fσ is the result of replacing the
right hand side of all pairs y ÞÑ a in F with paσqÓ.

The rules in Figure 3 model the basic interaction between the various subsolvers in
our approach. The rule Prop-Assign considers each propositional satisfying assignment
M for a quantifier-free formula ϕ P G, i.e., each set M of literals such as every atom
of ϕ occurs either positively or negatively (but not both) in M , all the atoms in M
occur in ϕ, and M |ùp ϕ. For each such M , Prop-Assign has a conclusion where
the string constraints in M (denoted as M |S) are given to the string subsolver and
the arithmetic constraints (denoted as M |A) are given to the arithmetic subsolver. The
arithmetic and string solvers use rules A-Prop and S-Prop to share equalities between
(shared) arithmetic terms, and use A-Conf and S-Conf to report that their respective set
of constraints is unsatisfiable. In those rules and in the rest of the paper, |ùLIA denotes
entailment in linear integer arithmetic. The rules L-Eq and L-Geq respectively infer and
guess arithmetic constraints involving string length.

Example 1. Consider the formula ϕ of the form lenx ą len y ^ y « conpx, aq. Start-
ing from configuration xtϕu,H,Hy, we may apply Prop-Assign to remove ϕ from G
and update S and A based the propositional satisfying assignment for ϕ. We obtain a
configuration where A is tlenx ą len yu and the E component of S is ty « conpx, aqu.
Since plenpconpx, aqqqÓ “ lenx ` 1, we may add len y « lenx ` 1 to A by the rule
L-Eq. Since lenx ą len y, len y « lenx`1 |ùLIA K, we may apply A-Conf to derive the
unsat configuration, establishing that ϕ is unsatisfiable in TASX. [\

The rules in Figure 4 are used by the string solver for building the mappings F
and N. We defer discussion of the X component of configurations until Section 3. In
the rules, we assume a total ordering ă on string terms, whose only restriction is that
t1 ă t2 if t1 is variable and t2 is not. For a term t, we call F t the flat form of t, and for
an equivalence class e, we call N e the normal form of e. We construct the mappings F
and N using the rules F-Form1, F-Form2, N-Form1 and N-Form2 in a mutually recursive
fashion. The remaining three rules apply to cases where the above rules do not result
in complete mappings for F and N. In the case where we compute flat forms for two
terms s and t in the same equivalence class that share a common prefix w followed
by two distinct variables u and v, we apply F-Unify to infer u « v in the case that the
lengths of u and v are equal, otherwise we apply F-Split to infer that u is a prefix of v
or vice versa in the case that the lengths of u and v are disequal. The rule L-Split splits
the derivation based on equality between the lengths of string variables x and y, which
we use to derive configurations where one of these two rules applies.

Example 2. Consider a configuration where E is ty « conpa, xq, x « conpu, zq, y «
conpa, v, zq, w « a, lenu « len vu. The equivalence classes of pE are

ty, conpa, xq, conpa, v, aqu tx, conpu, aqu tuu tvu tw, au

Using N-Form2, we obtain N rus “ puq and N rvs “ pvq. Using F-Form1 and N-Form1,
we obtain F conpu, aq “ N rxs “ pu, zq and F a “ N rws “ paq. For rys, we use F-
Form1 to obtain F conpa, xq “ pa, u, aq and F conpa, v, aq “ pa, v, aq. Since the flat
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F-Form1

conpt1, . . . , tnq P T pEq
N rtis “ si for i “ 1, . . . , n

F :“ F, conpt1, . . . , tnq ÞÑ ps1, . . . , snqÓ
F-Form2

l P T pEq
F :“ F, l ÞÑ plqÓ

N-Form1

e Ę VpEq
F t “ a for all t P ezVpEq

N :“ N, e ÞÑ a
N-Form2

rxs Ď VpEq
x ĺ y for all y P rxs

N :“ N, rxs ÞÑ pxq

F-Unify
F s “ pw, u,u1q F t “ pw, v,v1q s « t P pE u ă v E |ù lenu « len v

S :“ Sd v « u

F-Split

F s “ pw, u,u1q F t “ pw, v,v1q s « t P pE E |ù lenu ff len v
u R Vpv1q v R Vpu1q

S :“ Sd u « conpv, zq ‖ S :“ Sd v « conpu, zq

L-Split
x, y P VpEq x, y : Str

E :“ E, lenx « len y ‖ E :“ E, lenx ff len y

Fig. 4. String derivation rules. The rules construct flat forms F and normal forms N for string
terms. The letter l denotes a string constant, and z denotes a fresh string variable.

forms of these terms are not the same and lenu « len v P E, we may apply F-Unify to
conclude v « u. We update S to Sd u « v, after which the equivalence classes are:

ty, conpa, xq, conpa, v, aqu tx, conpu, aqu tu, vu tw, au

and F conpa, v, aq is now pa, u, aq. Then we can use N-Form1 and N-Form2 to recon-
struct N. Since F conpa, xq “ F conpa, v, aq “ pa, u, aq, we can obtain N rys “ pa, u, aq.
This results in a configuration where N is a complete mapping over the equivalence
classes and no more rules apply, indicating that E is satisfiable in TASX. [\

We say a configuration is cyclic if pE either contains a chain of equalities of the form
s « conpt1q, s1 « conpt2q, . . ., sn´1 « conptnq, sn « s where si is a term from
ti for each i, or an equality of the form s « t where F s “ pw,uq, F t “ pw,vq, w
is the maximal common prefix of F s, and F t and Vpuq X Vpvq is non-empty. Recent
techniques have been proposed for cyclic string constraints [19, 29]. We instead focus
primarily on acyclic string constraints in the following result.

Theorem 1. For all quantifier-free ΣAS-formulas ϕ, the following hold.

1. There is a closed derivation tree with root xtϕu,H,Hy only if ϕ is unsat in TASX.
2. There is a derivation tree with root xtϕu,H,Hy containing an acyclic saturated

configuration only if ϕ is sat in TASX.

3 Techniques for Extended String Constraints

This section gives a novel extension of the calculus in the previous section for deter-
mining the satisfiability of TASX-constraints. While the decidability of this problem is
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Ext-Expand
x « t P X

G :“ G, trrx « tssu X :“ Xztx « tu
where

rrx « substrpy, n,mqss “ itep 0 ď n ă len y ^ 0 ă m, y « conpz1, x, z2q ^ len z1 « n^
len z2 « len y ´m, x « ε q

rrx « containspy, zqss “ px ff Jq ô @k. 0 ď k ď len y ´ len z ñ substrpy, k, len zq ff z

rrx « index ofpy, z, nqss “ itep 0 ď n^ z ff ε^ containspy1, zq, substrpy1, x1, len zq « z ^
 containspsubstrpy1, 0, x1 ` len z ´ 1q, zq, x « ´1 q

with y1 “ substrpy, n, len y ´ nq and x1 “ x´ n

rrx « replacepy, z, wqss “ itep containspy, zq ^ z ff ε, x « conpz1, w, z2q ^
y « conpz1, z, z2q ^ index ofpy, z, 0q « len z1, x « y q

B-Val
t : Int n is a numeral

A :“ A, t ď n ‖ A :“ A, t ą n
B-Inst

G “ G1, ϕr@k. 0 ď k ď tñ ψs
A |ùLIA t ď n for some numeral n

G :“ G1, tϕr^n
i“0 ψtk ÞÑ iusu

Fig. 5. Rules for reducing ΣASX-constraints to ΣAS-constraints, where z1, z2 are fresh variables,
n1 ´ n2 denotes the maximum of n1 ´ n2 and 0, and ite is the if-then-else connective.

not known [5], we focus on techniques that are both refutation-sound and model-sound
but guaranteed to terminate in general. We introduce two techniques for establishing
the (un)satisfiability of TASX-constraints S, described by the additional derivation rules
in Figures 5 and 6 which supplement those from Section 2.

3.1 Expanding Extended Function Terms to Bounded Integer Quantification

The satisfiability problem for equalities over ΣASX-terms can be reduced to the satis-
fiability problem for possibly quantified ΣAS-formulas. This reduction is provided by
rule Ext-Expand in Figure 5 which, given x « t P X, adds an equisatisfiable formula
rrx « tss to G, the expanded form of x « t. The rules also removes x « t from X ,
effectively marking it as processed. Since rrx « tss keeps the (free) variables of x « t,
any interpretation later found to satisfy rrx « tss will also satisfy x « t.

The definition of expanded form for the possible cases of t are given below rule
Ext-Expand.7 We remark that this rule can be applied only finitely many times. For an
intuition of why, consider any ordering ă on function symbols such that f ă g if g is
an extended function and f is not, and substr ă contains ă index of ă replace. In all
cases, all function symbols of rrx « fptqss are smaller than f in this ordering.

Note that the reduction introduces formulas with bounded integer quantification,
that is, formulas of the form @k. 0 ď k ď t ñ ϕ, where t does not contain k and
ϕ is quantifier-free. Special consideration is needed to handle formulas of this form.
We employ a pragmatic approach, modeled by the other two rules in Figure 5, which
guesses upper bounds on certain arithmetic terms and eliminates those quantified for-
mulas based on these bounds. Specifically, rule B-Val splits the search into two cases

7 We use a number of optimizations of this encoding in our implementation.
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t ď n and t ą n, where t is an integer term and n is a numeral. In the rule B-Inst,
if G contains a formula ϕ having a subformula @k. 0 ď k ď t ñ ψ and A entails a
(concrete) upper bound on t, then that subformula is replaced by a finite conjunction.
Since all quantifiers introduced in a configuration are bounded, these two rules used in
combination suffice to eliminate them.

Example 3. Consider the formula ϕ “ containspy, zq ^ 0 ă len y ď 3 ^ 0 ă len z.
Applying Prop-Assign to ϕ results in a configuration where E, X and A respectively are
tx « Ju, tx « containspy, zqu, and t0 ă len y ď 3, 0 ă len zu. Using Ext-Expand, we
remove x « J from X and add to G, rrx « containspy, zqss which is:

px ff Jq ô @k. 0 ď k ď len y ´ len z ñ substrpy, k, len zq ff z .

Since A |ùLIA len y ´ len z ď 2, by B-Inst we can replace this formula with:

ppx ff Jq ô ^2
j“0 substrpy, nj , len zq ff zq ^

Ź2
j“0 nj « j

where nj is a fresh integer variable for j “ 0, 1, 2. Applying Prop-Assign to this formula
gives a branch where E and X are updated to tx « J,m0 « len z, x0 « zu and
tx0 « substrpy, n0,m0qu for fresh variables x0 and m0. Using the rule Ext-Expand,
we remove the equality from X and add rrx0 « substrpy, n0,m0qss to G, which is:

itep 0 ď n0 ă len y ^ 0 ď m0,
y « conpz1, x0, z2q ^ len z1 « 0^ len z2 « len y 9́m0, x0 « ε q

with z1, z2 fresh string variables. Applying Prop-Assign again produces a branch with
E “ tx « J, x0 « z,m0 « len z, y « conpz1, x0, z2qu and X empty. The set E is satis-
fiable in TASX. Deriving a saturated configuration from this point indicates that ϕ is sat-
isfiable in TASX as well. Indeed, all interpretations that satisfy both y « conpz1, x0, z2q
and x0 « z also satisfy containspy, zq. [\

Although these rules give the general idea of our approach, our implementation
actually handles the bounded quantifiers in a more sophisticated way, using model-
based quantifier instantiation [23]. In a nutshell, we avoid generating all the instances
of a quantified formula either by backtracking when a subset of them are unsatisfiable,
or by determining that (sets of) instances are already satisfied by a candidate model.

3.2 Context-Dependent Simplification of Extended Function Terms

The reductions described above may be impractical due to the size and complexity of
the formulas they introduce. For this reason, we have developed techniques for recog-
nizing when the interpretation of an extended function term can be deduced based on
the constraints in the current context. As a simple example, if containspabc, xq is a term
belonging to the string theory (with abc a string constant), and the string solver has in-
ferred that x is equal to a concrete value (e.g., d) or even a partially concrete value (e.g.,
conpd, yq), then we can already infer that containspabc, xq is equivalent to K, thereby
avoiding the construction of its expanded form. We present next a generic technique for
inferring such facts that has a substantial performance impact in practice.
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Ext-Simplify
x « t P X E |ù y « s ptty ÞÑ suqÓ is a ΣAS-term

G :“ G, tx « ptty ÞÑ suqÓu X :“ Xztx « tu

Ext-Simplify-Pred
x « t P X E |ù y « s t : Bool

G :“ G, tpx « Jq ô ppt « Jqty ÞÑ suqÓu X :“ Xztx « tu

Ext-Eq
x1 « t1, x2 « t2 P X E |ù y « s pt1ty ÞÑ suqÓ “ pt2ty ÞÑ suqÓ

S :“ S‘ tx1 « x2u

Fig. 6. Rules for context-dependent simplification of extended functions terms.

The rule Ext-Simplify from Figure 6 applies to configurations in which an extended
function term t can be simplified to an equivalent form, modulo the current set of con-
straints, that does not involve extended functions. In this rule, we derive a set of equal-
ities y « s that are consequences of our current set of string constraints E, where
typically y are the (free) variables of t. We will refer to ty ÞÑ su as a derivable substi-
tution (in E). If the simplified form of t under this substitution is a ΣAS-term, then we
add the equality x « ptty ÞÑ suqÓ to G, and remove x « t from X. Similarly when t
is of sort Bool, the rule Ext-Simplify-Pred adds an equivalence to G based on the result
of simplifying the formula t « J under a derivable substitution, and removes x « t
from X. The rule Ext-Eq is used to deduce equalities between extended terms that are
syntactically identical after simplification under a derivable substitution.

These rules require methods for computing the simplified form tÓ of ΣASX-terms
t, as well as for choosing substitutions ty ÞÑ su. We describe these methods in the
following, and give several examples.

Simplification rules for extended string functions Recall that by construction, a term t
and its simplified form tÓ are equivalent in TASX. It is generally advantageous to use
techniques that often simplify ΣASX-terms t to ΣAS-terms tÓ, since this eliminates the
need to apply Ext-Expand to compute the expanded form of t. For this reason, we use
aggressive and non-trivial simplification techniques when considering ΣASX-terms.

Examples of some of the simplification rules for contains are given in Figure 7.
There, for string constants l1, l2, we write l1zl2 to denote the empty string if l1 does not
contain l2, and the remainder obtained from removing the largest prefix of l1 containing
l2 otherwise. We use l1\l l2 (resp. l1\r l2) to denote l2 if l1 contains l2, and the largest
suffix (resp. prefix) of l1 that is a prefix (resp. suffix) of l2 otherwise. For example,
pabcdezcdq “ e, pabcdezbaq “ ε, pabcde \l defq “ de, pabcde \r defq “ ε, and
pabcdc \l cdq “ cd. Also, s Ñ˚ t indicates that t can be obtained from s by zero
or more applications of the rules in the figure. One can prove that his rewrite system
is terminating by noting that all conditions and right hand side of each non-trivial rule
involve only concatenation terms with strictly fewer arguments than its left hand side.

In practice, the rules are implemented by a handful of recursive passes over the
arguments of contains terms. Computing the simplified form of other operators is also
fairly sophisticated and not shown here. (Our simplifier is around 2000 lines of C++
code.) Despite its complexity, simplification often results in significant performance
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containspl1, l2q Ñ J if l1 contains l2
containspl1, l2q Ñ K if l1 does not contain l2

containspl1, conpl2, tqq Ñ K if l1 does not contain l2
containspl1, conpl2, tqq Ñ K if containspl1zl2, conptqq Ñ˚

K

containspl1, conpx, tqq Ñ K if containspl1, conptqq Ñ˚
K

containspconpl1, tq, l2q Ñ J if l1 contains l2
containspconpx, tq, sq Ñ J if containspconptq, sq Ñ˚

J

containspconpt, sq, conpt,uqq Ñ J if containspconpsq, conpuqq Ñ˚
J

containspconpl1, tq, l2q Ñ containspconptq, l2q if l1 \l l2 “ ε
containspconpt, l1q, l2q Ñ containspconptq, l2q if l1 \r l2 “ ε

containspε, tq « J Ñ ε « t
containspconpt1, l1, t2q, l2q « J Ñ _

2
i“1containspconptiq, l2q « J if l1 \r l2 “ l1 \l l2 “ ε

Fig. 7. Examples of simplification rules for contains.

improvements, by eliminating the need to generate the expanded form of ΣASX-terms.
We illustrate this in the following examples.

Example 4. Given input y « bc ^ containspconpa, yq, conpb, z, aqq, our calculus con-
siders a configuration where E and X respectively are

ty « bc, x1 « J, z1 « conpa, yq, z2 « conpb, z, aqu and tx1 « containspz1, z2qu

where x1, z1, z2 are fresh string variables. We have that E |ù z1 « abc ^ z2 «
conpb, z, aq. Hence the substitution σ “ tz1 ÞÑ abc, z2 ÞÑ conpb, z, aqu is derivable in
this configuration. Since pcontainspz1, z2qσqÓ “ containspabc, conpb, z, aqqÓ “ K, we
may apply Ext-Simplify to remove x1 « containspz1, z2q from X and add x1 « K to E,
after which unsat may be derived, since x1 « J P E. In this example, we have avoided
expanding the input formula by reasoning that conpa, yq does not contain conpb, z, aq
in the context where y is bc. [\

Example 5. Given input y « conpa, zq ^ containspconpx, yq, bcq, our calculus consid-
ers the configuration where E and X respectively are

ty « conpa, zq, x1 « J, z1 « conpx, yq, z2 « bcu and tx1 « containspz1, z2qu

The substitution σ “ tz1 « conpx, a, zq, z2 ÞÑ bcu is derivable in this configuration.
Computing pcontainspz1, z2qσqÓ results in containspx, bcq _ containspz, bcq. We may
apply Ext-Simplify-Pred to remove x1 « containspz1, z2q from X and add this formula
to G, after which we consider the two disjuncts independently. [\

Example 6. Given input y « ab^ containspconpb, zq, yq^  containspz, yq, our calcu-
lus considers the configuration where E and X respectively are

ty « ab, x1 « J, x2 « K, z1 « conpb, zqu and tx1 « containspz1, yq, x2 « containspz, yqu

The substitution σ “ ty « ab, z1 « conpb, zqu is derivable in this configuration, and
pcontainspz1, yqσqÓ “ containspz, abq “ pcontainspz, yqσqÓ. Hence we can apply Ext-
Eq to add x1 « x2 to E, after which unsat can be derived. [\
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Choosing Substitutions A simple and general heuristic for choosing substitutions ty ÞÑ
su for terms t in the rules from Figure 6 is to map each variable y in t to some represen-
tative of its equivalence class rys. We assume string constants are chosen as representa-
tives whenever possible. We call this the representative substitution for t (in E). Repre-
sentative substitutions are both easy to compute and often enough for reducing ΣASX-
terms. A more powerful method for choosing substitutions is to consider substitutions
that map each free variable y in t to conpa1, . . . , anqÓ where N rys “ pa1, . . . , anq. We
call this the normal form substitution for t. Intuitively, the normal form of t is a schema
representing all known information about t. In this sense, a substitution mapping vari-
ables to their normal forms gives the highest likelihood of enabling our simplification
techniques. In practice, our implementation takes advantage of both of these heuristics
for choosing substitutions.

Example 7. Say we are in a configuration where the equivalence classes of pE are:

ty, conpa, xqu tx, conpz, cq, uu tz, w, bu

and the normal forms are Nrys “ abc, Nrxs “ bc and Nrzs “ b. If y, x, and b are
chosen as the representatives of these classes, the representative substitution σr for this
configuration is ty ÞÑ y, x ÞÑ x, u ÞÑ x, z ÞÑ b, w ÞÑ bu, whereas the normal form
substitution σn is ty ÞÑ abc, x ÞÑ bc, u ÞÑ bc, z ÞÑ b, w ÞÑ bu. Only the latter substi-
tution suffices to show that containspy, conpz, zqq is false in the current context, noting
pcontainspy, conpz, zqqσrqÓ “ containspy, bbq and pcontainspy, conpz, zqqσnqÓ “ K.

[\

4 Implementation

We have implemented all of these techniques in the DPLL(T)-based SMT solver CVC4 [4].
At a high level, our implementation can be summarized as a particular strategy for ap-
plying the rules of the calculus, which we outline in the following.

Strategy 1 Start with a derivation tree consisting of (root) node xtϕu,H,Hy. Let tlen
be lenx1 ` . . .` lenxm where x1, . . . , xm are the string variables of ϕ.

While the tree is not closed, consider as current configuration the left-most leaf in the
tree that is not unsat and apply to it a derivation rule to that configuration, based on
the steps below.

1. Let n be the smallest numeral such that tlen ą n R A. If tlen ď n R A, apply B-Val
for tlen and n.

2. If G contains a formula ϕ with subformula @k. 0 ď k ď t ñ ψ, then let n be the
smallest numeral such that t ą n R A. If t ď n P A, apply B-Inst for ϕ and n.
Otherwise, apply B-Val for t and n.

3. If possible, apply a rule from Figure 3, giving priority to A-Conf and S-Conf.
4. If possible, apply a rule from Figure 6 based on representative substitutions.
5. If possible, apply a rule from Figure 4.
6. If possible, apply a rule from Figure 6 based on normal form substitutions.
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7. If X is non-empty, apply the rule Ext-Expand for some equality x « t in X.

If no rule applies and the current configuration is acyclic, return sat. If the tree is closed,
return unsat. [\

The strategy above is sound both for refutations and models, although it is not ter-
minating in general.

Theorem 2. For all initial configurations xtϕu,H,Hy where ϕ is a quantifier-free
ΣASX-formula:

1. Strategy 1 returns unsat only if ϕ is unsatisfiable in TASX.
2. Strategy 1 returns sat only if ϕ is satisfiable in TASX.

Implementation While a comprehensive description of our implementation is beyond
the scope of this work, we mention a few salient implementation details. The rule Prop-
Assign is implemented by converting G to clausal normal form and giving the resulting
clauses to a SAT solver with support for conflict-driven clause learning. The rule A-
Conf is implemented by a standard theory solver for linear integer arithmetic. The rules
of the calculus that modify the S component of our configuration are implemented in
a dedicated DPLL(T) theory solver for strings which generates conflict clauses when
branches of a derivation tree are closed, and theory lemmas for rules that add formulas
to G or A and those that have multiple conclusions. Conflict clauses are generated by
tracking explanations so that each literal internally added to S can be justified in terms
of input literals. Finally, we do not explicitly introduce fresh variables when construct-
ing the set X, and instead record the set of extended terms that occur in E, which are
implicitly treated as variables. We now revisit a few of the examples, giving concrete
details on the operation of the solver.

Example 8. In Example 1, our input was lenx ą len y ^ y « conpx, aq. For this input,
the SAT solver finds a propositionally satisfying assignment that assigns both conjuncts
to true, which causes the literal lenx ą len y to be given to the theory solver for linear
integer arithmetic, and y « conpx, aq to be given to the theory solver for strings. This
corresponds to an application of the rule Prop-Assign. The string solver sends p y «
conpx, aq_ len y « lenx`1q as a theory lemma to the SAT solver, corresponding to an
application of the rule L-Eq. After that, the SAT solver assigns len y « lenx` 1 to true,
causing that literal to be asserted to the arithmetic solver, which subsequently generates
a conflict clause of the form p lenx ą len y _  len y « lenx ` 1q corresponding to
an application of A-Conf. After receiving this clause, the SAT solver is unable to find
another satisfying assignment and causes the system to terminate with “unsat.” [\

Example 9. In Example 4, the string solver is given as input the literals y « bc and
containspconpa, yq, conpb, z, aqq « J. The intermediate variables z1 and z2 are not
explicitly introduced. Instead, using the substitution σ “ ty ÞÑ bcu, the solver directly
infers that containspconpa, yq, conpb, z, aqqσÓ “ K. Based on this simplification, it
infers containspconpa, yq, conpb, z, aqq « K with the explanation y « bc. Since the
inferred literal conflicts with the second input literal, the string solver reports the conflict
clause  y « bc_ containspconpa, yq, conpb, z, aqq « J. [\
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Example 10. In Example 6, the equality y « ab is the explanation for the substi-
tution σ “ ty ÞÑ abu under which containspconpb, zq, yqσÓ “ containspz, abq “
containspconpz, yqqσÓ. Hence, the solver reports p y « ab_ containspconpb, zq, yq_
containspz, yqq as a conflict clause in this example. [\

Example 11. Explanations are tracked for normal form substitutions as well. In Exam-
ple 7, a possible explanation for the substitution σn is y « conpa, xq^x « conpz, cq^
u « x ^ z « b ^ w « z. Explanations for simplifications that occur under the substi-
tution σn must include these equalities. [\

In practice, we minimize explanations by only including the variables in substitu-
tions that are relevant for certain inferences. In particular, the domain of derivable sub-
stitutions is restricted to the free variables of the terms they apply to. We further reduce
this set based on dependency analysis. For example, containspabc, conpx, yqq « K can
be explained by x « d^ y « a. However, x « d alone is enough.

5 Evaluation

This section reports on our experimental evaluation of our approach for extended string
constraints as implemented in the SMT solver CVC4.8 We used benchmark queries gen-
erated by running PyEx, a symbolic executor for Python programs, over a test suite
that mimics the usage by a real-world Python developer. The technical details of our
benchmark generation process are provided in Section 5.2.

We considered several configurations of CVC4 that differ in the subset of steps from
Strategy 1 they apply. The default configuration, denoted cvc4, performs Steps 2, 3, 5
and 7 only. Configurations with suffix f (for “finite model finding”) perform Step 1, and
configurations with suffix s (for “simplification”) perform Steps 4 and 6. For example,
configuration cvc4+fs performs all seven steps. We consider other solvers for string
constraints, including Z3-STR [30] (git revision e398f81) and Z3 [9] (version 4.5, git
revision 24eae3f) which was recently extended with native support for strings.

5.1 Comparison with Other String Solvers

We first evaluated the raw performance of CVC4, Z3, and Z3-STR on the string bench-
marks we collected with PyEx. We considered three sets of benchmarks produced by
PyEx using cvc4+fs, Z3, and Z3-STR as the path constraint solver during program explo-
ration. We denote these sets, which collectively consisted of 25,421 benchmark prob-
lems, as PyEx-cfs, PyEx-z3 and PyEx-z32, respectively. We omit a small number (35)
of these benchmarks for the following reasons: for 13 of them, at least one of the solvers
produced a parse error; for the other 22, one solver returned a model (i.e., a satisfying
assignment for the variables in the input problem) and agreed with its own model, but
another solver answered “unsat” and disagreed with the model of the first solver.9 We

8 For details, see http://cvc4.cs.stanford.edu/papers/CAV2017-strings/ .
9 We say solverA (dis)agrees with solverB’s model for input formula ϕ ifA finds that ϕ^MB

is (un)sat, where MB is a conjunction of equalities encoding B’s.
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PyEx-cfs (5557) PyEx-z3 (8399) PyEx-z32 (11430) Total (25386)
Solver sat unsat ˆ sat unsat ˆ sat unsat ˆ sat time unsat time
cvc4+fs 4229 1256 72 5694 1325 1380 10104 1194 132 20027 5h1m 3775 7m
cvc4+s 4133 1270 154 5461 1325 1613 9884 1193 353 19478 8h40m 3788 6m
cvc4+f 4160 1217 180 5571 1308 1520 9210 1145 1075 18941 6h38m 3670 6m
cvc4 4160 1213 184 5570 1308 1521 9211 1145 1074 18941 6h32m 3666 6m
z3 3421 1274 862 4925 1333 2141 7219 1196 3015 15565 11h30m 3803 3m
z3str2 2013 1278 2266 2803 1333 4263 4726 1182 5522 9542 15h47m 3793 13m

Fig. 8. Results of running each solver over benchmarks generated by PyEx over our test suite.
All benchmarks run with a 30 second timeout.

attribute the parse errors to how the solvers process certain escape sequences in string
constants, and the model discrepancies to minor differences in the semantics of substr
when input indices are out of bounds.

All results were produced on StarExec [25], a public execution service for running
comparative evaluations of logical solvers. The results for the three solvers on the three
benchmark sets are shown in Figure 8 based on a 30 second timeout. The columns show
the number of benchmarks that were determined to be satisfiable and unsatisfiable by
each solver. The column with headingˆ indicates the number of times the solver either
timed out or terminated with an inconclusive response such as “unknown.” The best
configuration of CVC4 (cvc4+fs) had a factor of 3.8 fewer timeouts than Z3, and a factor
of 7.6 fewer timeouts or failures than Z3-STR in total over all benchmark sets. In partic-
ular, we note that cvc4+fs solved 1,451 unique benchmarks with respect to Z3 among
those generated during a symbolic execution run using Z3 as the solver (PyEx-z3).
Since PyEx supports concurrent solver invocation, this suggests a mixed-solver strat-
egy that employs both cvc+fs and Z3 would likely have reduced the number of failed
queries for that run. For unsatisfiable benchmarks, the solvers were relatively closer in
performance, where Z3 solved 24 more unsatisfiable benchmarks than cvc4+fs, which
is not tuned for the unsatisfiable case due to its use of finite model finding. This fur-
ther suggests a mixed-solver strategy would likely be beneficial for symbolic execution
since it is often used for both program exploration (where sat leads to progress) and
vulnerability checking (where unsat implies safety).

In addition to solving more benchmarks, cvc4+fs was significantly faster over them.
Figure 9 plots the cumulative run time of the three solvers on benchmarks that each
solves. With respect to Z3, which took 11 hours and 33 minutes on the 19,368 bench-
marks its solves, cvc4+fs solved its first 19,368 benchmarks in 1 hour and 23 minutes,
and overall took only 5 hours and 8 minutes on the 23,802 benchmarks it solves.

Using the context-dependent simplification techniques from Section 3.2, cvc4+s
was able to solve 663 more benchmarks than cvc4, which does not apply simplification.
By incorporating finite model finding, cvc4+fs was able to solve 536 more benchmarks
in significantly less time, with a cumulative difference of more than 3 hours on solved
benchmarks compared to cvc4+s. Taking the virtual best configuration of CVC4, our
techniques find 20,594 benchmarks to be satisfiable, 567 more than cvc4+fs, indicating
that a portfolio approach for the various configurations would be advantageous.
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Fig. 9. Cactus plot of configurations of CVC4, Z3 and Z3-STR on solved benchmarks across all
three benchmark sets.

We also measured how often CVC4 resorted to expanding extended function terms.
We considered a modified configuration cvc4+fs’ that is identical to cvc4+fs except that
it does not use the rule Ext-Simplify. The 23,738 benchmarks solved by both cvc4+fs and
cvc4+fs’ had 619.2 extended function terms on average. On average over these bench-
marks, the configuration cvc4+fs’ found that 63.5 unique extended functions terms were
relevant to satisfiability (e.g., were added to a configuration), and of these 24.3 were ex-
panded (38%). Likewise, cvc4+fs found that 66.4 unique extended functions terms were
relevant to satisfiability, and of these 12.6 were expanded (19%). With Ext-Simplify, it
inferred 405.2 equalities per benchmark on average based on context-dependent simpli-
fication, showing that simplification is possible in a majority of contexts (97%). Lim-
ited to expansions that introduce universal quantification, which excludes expansions
of substr and positively asserted contains, cvc4+fs’ considered 11.4 expansions on av-
erage compared to 2.7 considered by cvc4+fs. This means that approximately 4 times
fewer quantified formulas were introduced thanks to context-dependent simplification
in cvc4+fs.

5.2 Symbolic Execution for Python

Our benchmarks were generated by PyEx, which is a symbolic executor designed to as-
sist Python developers achieve high-coverage testing in their daily development routine,
e.g., as part of the nightly tests run on the most recent version of a code base. To demon-
strate the relative performance of CVC4, Z3, and Z3-STR in our nightly tests scenario,
we ran PyEx on a test suite of 19 functions sampled from 4 popular Python packages:
httplib2, pip, pymongo, and requests. The set of queries generated during this experi-
ment was used for our evaluation of the raw solver performance in Section 5.1. In this
section, we show that the superior raw performance of CVC4 over other current solvers
also translates into real-life benefits for PyEx users.

Our experiment was conducted on a developer machine featuring an Intel E3-1275
v3 quad-core processor (3.5GHz) and 32GB of memory. PyEx was run on each of the
19 functions for a maximum CPU time of 2 hours. By design, PyEx issues concurrent
queries using Python multiprocessing when multiple queries are pending. To reflect the
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configuration of our test machine, we capped the number of concurrent processes to 8.
Note that, due to the nature of our test infrastructure, each of the 19 functions was tested
in sequence and thus concurrency happened only within the testing of each individual
function. In addition, PyEx has a notion of a per-path timeout, which is a heuristic to
steer code exploration away from code paths that are stuck with hard queries. For this
experiment, that timeout was set to 10 minutes.

We argue that the most important metrics for a developer are piq the wall-clock
time to run PyEx over the test suite and piiq the coverage achieved over this time. In
our experiments, PyEx with Z3 and with Z3-STR finished in 717 minutes and 829 min-
utes, respectively. By comparison, PyEx with the recommended configuration of CVC4
(cvc4+fs) finished in 295 minutes, which represents a speedup of 59% and 64% respec-
tively over the other solvers. To compare coverage, we used the Python coverage library
to measure both line coverage, the percentage of executed source lines, and branch
coverage, the number of witnessed branch outcomes, of the test suite during symbolic
execution. The line coverage of PyEx with cvc4+fs, Z3, and Z3-STR was respectively
8.48%, 8.41%, and 8.34%,10 whereas the branch coverage was 3612, 3895, and 3500.
Taking both metrics into account, we conclude that cvc4+fs is highly effective for PyEx
since it achieves similar coverage as the other tools while running significantly faster.

6 Concluding Remarks and Future Work

We have presented a calculus for extended string constraints that relies on both bounded
quantifier elimination and context-dependent simplification techniques. The latter led
to significant performance benefits for constraints coming from symbolic execution of
Python programs. An implementation of these techniques in CVC4 has 3.8 times fewer
timeouts and enables the PyEx symbolic executor to achieve comparable program cov-
erage on our test suite while using only 41% of the runtime compared to other solvers.

Our analysis on program coverage indicates that an interesting research avenue for
future work would be to determine correlations between certain features of models gen-
erated by string solvers and their utility in a symbolic executor, since different models
may lead to different symbolic executions and hence different overall analyses.

We plan to develop context-dependent simplification techniques for other string
functions, including conversion functions str to int and int to str, and to adapt these
techniques to other SMT theories. Notably, we would like to use context-dependent
simplification to optimize lazy approaches for fixed-width bit-vectors [14] where it is
beneficial to avoid bit-blasting bit-vector operators, such as multiplication, that require
elaborate encodings.

Acknowledgments This work was supported in part by the National Science Founda-
tion under grants CNS-1228765, CNS-1228768, and CNS-1228827. We express our
immense gratitude to Peter Chapman, who served as the first lead developer of PyEx.

10 Overall coverage appears to be low because we tested only some functions from each library.
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