
A Secure Cloud with Minimal Provider Trust ∗

Amin Mosayyebzadeh1, Gerardo Ravago1, Apoorve Mohan6, Ali Raza1, Sahil Tikale1,
Nabil Schear2, Trammell Hudson3, Jason Hennessey1,

Naved Ansari1, Kyle Hogan5, Charles Munson2,
Larry Rudolph3, Gene Cooperman6, Peter Desnoyers6, Orran Krieger1

1Boston University, Boston, MA 2MIT Lincoln Laboratory, Lexington, MA 3Two Sigma, New York, NY
5MIT, Cambridge, MA 6Northeastern University, Boston, MA

Abstract
Bolted is a new architecture for a bare metal cloud with the
goal of providing security-sensitive customers of a cloud
the same level of security and control that they can obtain in
their own private data centers. It allows tenants to elastically
allocate secure resources within a cloud while being protected
from other previous, current, and future tenants of the cloud.
The provisioning of a new server to a tenant isolates a bare
metal server, only allowing it to communicate with other
tenant’s servers once its critical firmware and software have
been attested to the tenant. Tenants, rather than the provider,
control the tradeoffs between security, price, and performance.
A prototype demonstrates scalable end-to-end security with
small overhead compared to a less secure alternative.

1 Introduction
Despite all the advantages of today’s public clouds, many se-
curity sensitive organizations are reluctant to use them because
of their security challenges and the trust that the tenant needs
to place in the cloud provider. Can we make a cloud that is
appropriate for even the most security sensitive tenants? Can
we make a cloud where the tenant does not need to fully trust
the provider? Can we do this without hurting the performance
of tenants that do not wish to pay for extra security ?

The key security challenge of Infrastructure-as-a-Service
(IaaS) clouds stems from collocating multiple tenants on a sin-
gle physical node with virtualization. Malicious tenants can ex-

∗DISTRIBUTION STATEMENT A. Approved for public release: distribution
unlimited. This material is based upon work supported by the Assistant Secretary of De-
fense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the Assistant Secretary of Defense for Research and Engineering. Delivered to
the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013
or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in
this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed
above. Use of this work other than as specifically authorized by the U.S. Government
may violate any copyrights that exist in this work.

ploit vulnerabilities in the huge trusted computing base (TCB)
to launch attacks on tenants running on the same node [29]
or even worse, if the attacker compromises the hypervisor, to
launch attacks on the cloud provider. Moreover, virtualization
enables side-channel and covert channel attacks such as the
recent Meltdown and Spectre exploits [31, 34, 35, 44, 45].
Recent processor secure enclave technology Intel SGX
has suffered from its own security challenges from the
collocation of multiple tenants [10, 16, 33, 40, 52]. Such
security concerns keep huge sections of the economy, such
as medical companies and hospitals, financial institutions,
federal agencies etc., from being able to take advantage of
the benefits of today’s clouds. [6,8,11,42]1

Bare metal clouds [27, 28, 41, 43, 48] remove the threat
of side-channel attacks and covert channels implicit in
virtualization. However, all the existing bare metal clouds
still require the tenant to fully trust the provider which may
not always be a safe assumption. Consider how one protects
against server firmware attacks. If a prior tenant of a node is
able to inject malicious firmware, this modified firmware can
be used to attack future tenants of that server. Existing clouds
protect against firmware attacks on the tenant’s behalf [15,27]
but there is no way for the tenant to verify, for example, that
the provider was not compromised or even has installed all
firmware security patches.

Bolted differs from today’s bare metal clouds by reducing
the implicit trust in the provider. Bolted allows a tenant to elas-
tically carve out a secure private enclave of commodity phys-
ical servers in which she may run applications. The enclave
is protected from previous users of the same servers (using
hardware-based attestation), concurrent tenants of the cloud
(using network isolation and encryption), and future users of
the same servers (using storage encryption and memory scrub-

1 IARPA recently released RFI [7] describing the requirements of
one security-sensitive community to replicating as closely as possible
the properties of an air-gapped private enclave. We believe that meeting
this requirement would alleviate the concerns of a broad community of
security-sensitive customers, making the geographical distribution, elasticity,
and on-demand pricing of cloud available to a wide community of users.

1

bing). With Bolted an organization with security expertise is
able to deploy their own attestation infrastructure, and can di-
rectly validate the measurements against their expectations of
firmware and software deployed. Each Bolted component ad-
dresses a different potential vulnerability. It is the combination
of Bolted components that minimizes the role of the provider
to mostly that of securing the physical access to the hardware.

We have implemented a prototype of Bolted and demon-
strate that the prototype can provision an enclave of sixteen
servers with a full application environment with legacy servers
and firmware in around 8 minutes, enabling highly elastic
environments. We show that the overhead to do attestation
with Bolted is low, adding only 25% to the cost of a highly
optimized provisioning system. Replacing traditional UEFI
firmware with a customized Linux-based firmware we devel-
oped for this service, we further improve the security of the
user and reduce provisioning time to being around 10% faster
than the unattested version; a node can be fully provisioned
with a full application environment in just over 3 minutes.

2 Threat Model

Our goal in Bolted is to enable tenants to strongly isolate
themselves from other tenants while placing as little trust in
the provider as possible. Specifically, we trust the provider
to maintain the physical security of the hardware, so physical
attacks like bus snooping or de-capping chips are out of scope.
We also trust the provider for availability of the network
and node allocation services and any network performance
guarantees. We assume that all cloud provider nodes are
equipped with Trusted Platform Modules (TPMs) [5].

We categorize the threats that the tenant faces into the
following phases:

Prior to occupancy: Malicious (or buggy) firmware can
threaten the integrity of the secure enclave of which the node
becomes a part. We must ensure that a previous tenant (e.g., by
exploiting firmware bugs) or cloud provider insider (e.g., by
unauthorized firmware modification) did not infect the node’s
firmware prior to the tenant receiving it. Further, we must
ensure that the node being booted is isolated from potential at-
tackers until it is fully provisioned and all defenses are in place.

During occupancy: Although many side-channel attacks
are avoided by disallowing concurrent tenants on the same
server, we must ensure that the node’s network traffic is
isolated so that the provider or other concurrent tenants of
the cloud cannot launch attacks against it or eavesdrop on its
communication with other nodes in the enclave. Moreover,
if network attached storage is used (as in our implementation)
all communication between storage and the node must be
secured.

After occupancy: We must ensure that the confidentiality
of a tenant is not compromised by any of its state (e.g, storage

or memory) being visible to subsequent software running on
the node.

3 Design Philosophy

A central design principle of Bolted is to enable as much func-
tionality as possible to be implemented by the tenant rather
than by the provider for three reasons: (i) to minimize the
trust that a tenant needs to place in the provider, (i) to enable
tenants with specialized security expertise and requirements
to implement functionality themselves, and (iii) to enable
tenants to make their own cost/performance/security tradeoffs.
This principle has a number of implications for our design.

First, Bolted differs from existing bare metal offerings in
that most of the component services that make up Bolted can
be operated by a tenant rather than by the provider. A security
sensitive tenant can customize or replace these services. All
the logic, that orchestrates how different services are used
to securely deploy a tenant’s software, is implemented using
scripts that can be replaced or modified by the user.

Second, while we expect a provider to secure and isolate the
network and storage of tenants, we only rely on the provider
for availability and not for the confidentiality or integrity of
the tenant’s computation. In the most secure deployments,
we assume that Bolted tenants will further encrypt all
communication between the tenants’ nodes and between
those nodes and storage. Bolted provides a (user-operated)
service to securely distribute keys for this purpose.

Third, we rely on attestation (measuring all firmware
and software and ensuring that it matches known good
values) that can be implemented by the tenant rather than
just validation (ensuring that software/firmware is signed by a
trusted party). This is critical for firmware which may contain
bugs [12, 20, 24, 25, 46, 49] that can disrupt tenant security.
Attestation provides a time-of-use proof that the provider has
kept the firmware up to date. More generally, we attest through
the process of incorporating a node into an enclave, and we
can also continuously attest when the node is operating, to
ensure that bugs in any layer of software (irrespective of who
signed them) have not allowed malicious code to be executed.

Fourth, we have a strong focus on keeping our software as
small as possible and making it all available via open source.
In some cases, we have written our own highly specialized
functionality rather than relying on larger function rich general
purpose code in order to achieve this goal. For functionality
deployed by the provider, this is critical to enable it to be
inspected by tenants to ensure that any requirements are met.
For example, previous attacks have shown that firmware se-
curity features are difficult to implement bug-free – including
firmware measurements being insufficient [13], hardware
protections against malicious devices not being in place [38],
and dynamic root of trust (DRTM) implementation flaws [51].
Further, our firmware is deterministically built, so that the

2

tenant can not only inspect it for correct implementation but
then attest that this is the firmware that is actually executing
on the machine assigned to the tenant. For tenant deployed
functionality, small open source implementations are valuable
to enable user-specific customization.

4 Architecture
The architecture of Bolted and the sequence that a node goes
through as part of being admitted to a tenant enclave is shown
in Figure 1. The state of the node changes as a result of its
interaction with the three main services that comprise the
Bolted system. Like any bare metal offering, Bolted requires,
an isolation service which allocates nodes and configures
networks to isolate those nodes from nodes of other tenants
and a provisioning service to provision the user’s operating
system and applications onto the allocated nodes. The Bolted
architecture adds a third: an Attestation Service.

The attestation service consists of a server and a client
component that runs in the firmware of the node. The
server is responsible for: 1) maintaining a whitelist of trusted
firmware/software measurements, 2) comparing quotes (hash
measurements signed by the TPM) of firmware/software
against the whitelist, 3) maintaining a registry of TPM to
node mappings to verify quotes by the TPM and ensure that
the quotes are coming from an expected node in the cloud, and
4) distributing keys to nodes so that they may encrypt commu-
nication between them as well as securely accessing storage.

The client component is responsible for participating the
node in the attestation protocol. On boot, the hardware mea-
sures the first portion of firmware that in turn measures the re-
mainder of the firmware and the next code (e.g., a bootloader)
before it is executed. That code in turn loads, measures and
then executes subsequent software, etc. These measurements
are all stored in the TPM. The client obtains quotes from
the TPM, i.e., cryptographically signed measurements of the
firmware and software that are loaded and executed on the
node. The client securely provides the quotes to the attesta-
tion server, which then matches them to its whitelist. The
compromised software will not match the whitelist and the
infected node will be rejected. Upon successful attestation, the
verifier securely provides the node a cryptographic key that
can bootstrap encrypted storage and network isolation. At this
point, the node is acquired by the tenant. It is critical that client
firmware and software be open, simple, verifiable, and, ideally,
deterministically built to enable reliable and secure attestation.

5 Implementation
We have developed a prototype of the Bolted architecture.
Here, we briefly describe the implementation components
of the three main services, the node firmware we use and how
these components work together.

Isolation

Service

Attestation

Service

Provisioning

Service

Free Pool

Airlock

Rejected Pool
Tenant Enclave

4

Download

bootloader and client

side attestation

software

Attest Node’s

Firmware

If Attestation

fails: moves the

node to rejected

pool

If Attestation passes:

move the node

to tenant’s

enclave

Provision

the node

with tenant’s

OS and

applications

Allocate a node

and move it into

Airlock which is

a quarantined

state where node

is isolated

1

3

5

6

7
2

Run Secure

Firmware

Figure 1: Bolted’s architecture: Blue arrows show state
changes and green dotted lines show actions taken by each
service.

Hardware Isolation Layer: The Hardware Isolation Layer
(HIL) [21] is our implementation of the Bolted isolation
service. The fundamental operations HIL provides are (i)
allocation of physical nodes, (ii) allocation of networks, and
(iii) connecting these nodes and networks. A tenant can invoke
HIL to allocate nodes to an enclave, create a management
network between the nodes, and then connect this network to
any provisioning tool (e.g., [9,14,17,36]). She can then create
additional networks for isolated communication between
nodes and/or attach those nodes to public networks made
available by the provider. HIL is a very simple service
(approximately 3000 LOC). It creates networks (currently
VLANs [26]) and attaches nodes to them by interacting with
the switches of the provider.

Malleable Metal as a Service: The Malleable Metal-as-a-
Service (M2) [36] is our implementation of the Bolted provi-
sioning service. The fundamental operations M2 provides are:
(i) create (disk) image, (ii) clone and snapshot an image, (iii)
delete an image, and (iv) boot a node from an image. Similar
to virtualized cloud services, M2 services images from
remote-mounted boot drives. Images are exposed to the nodes
via an iSCSI (TGT [19]) service managed by M2 and stored in
a Ceph [50] distributed file system. As published previously,
M2 is between 3-4 times faster than traditional provisioning
systems that install an image into a server’s local disk [36].

Keylime: Keylime [47] is our implementation of the
Bolted attestation service. It is divided into four components:
Registrar, Cloud Verifier, Client and Tenant. The registrar
maintains the node to TPM mapping. The verifier maintains
the whitelist of trusted code and checks nodes’ integrity. The
Keylime client is downloaded and measured by the node
firmware and then passes quotes from the node’s TPM to the
verifier. Keylime Tenant starts the attestation process and asks
Verifier to verify the node which runs Keylime client.

3

Un-Attested
 stock UEFI

Attested
 stock UEFI

Attested Heads
0

100

200

300

400

Si
ng

le
 N

od
e

Pr
ov

isi
on

in
g

Ti
m

es
 (S

ec
on

ds
)

Power-On-Self-Test (POST)
PXE
Chainboot into iSCSI
target using iPXE
Heads Download
 and Measurement(iPXE)
Heads Booting

Download Keylime Client
Attestation
Moving to enclave
Kexec into attested
kernel and boot

Figure 2: Performance with and without Bolted for systems
with stock UEFI firmware.

Heads: Heads [23] is our firmware implementation and
bootloader replacement. It is a minimal deterministically
built version of Linux that (i) zeroes all node memory,
(ii) downloads the Keylime client, and (if attestation has
succeeded) (iii) downloads and kexecs to a tenant’s kernel.
In the future, we expect to directly mount the iSCSI disk from
M2 to obtain the kernel, but currently, we fetch the kernel
from a web service stood up for this purpose.
Putting it together: The booting of a node is controlled by
a Python application that follows the sequence of steps shown
in Figure 1. Secure OS images contain a Keylime client that
obtains a key to encrypt network traffic between nodes in
the enclave as well as traffic to the boot disk mounted using
iSCSI. For servers that support it, we burn Heads directly
into the server’s flash, and for the other servers, we download
Heads from a PXE service stood up for this purpose and
then continue the same sequence as if Heads was burned into
the flash. We have modified iPXE client code to measure
the downloaded Heads image into a TPM register so that all
software involved in booting a node can be attested.

6 Evaluation
We show performance results from our initial prototype im-
plementation of Bolted. Timing breakdowns are shown using
a Dell R630 server with 256 GB RAM and 2 2.6GHz 10 (20
HT) core Intel Xeon processors model E5-2660 v3. We have
physical access to this server in our lab and show experiments
with both stock UEFI firmware and our own Heads firmware.
Scalability experiments are shown on 17 Dell M620 blade
serves with 64 GB memory and 2 2.60GHz 8 (16 HT) core
Xeon E5-2650 v2 processors connected to a 10Gbit switch.

:

Figure 2 shows the timing breakdown of different stages
of provisioning with Bolted. The three scenarios are: 1) an
unattested boot that just uses M2 to directly boot a users
image, 2) fully attested boot with stock UEFI firmware, and
3) fully attested boot with Heads burnt into the flash.

Without Bolted’s security features, a server node provi-
sioning via M2 takes three steps: Power-on-self-test (POST),
PXE, and then chainbooting from an iSCSI target using iPXE.
The total time is under 4 minutes with 2.5 minutes spent in
the POST step alone.

For full attestation using stock UEFI firmware, after
POST, Bolted goes through the following phases: (i) PXE
downloading iPXE, (ii) iPXE downloading and measuring
Heads, (iii) booting Heads, (iv) download the Keylime client
(currently using http) and measuring it, (v) running the
Keylime client, registering the node and attesting it, and then
downloading (currently using http) and measuring the tenants
kernel, (vi) moving the node into the tenants enclave and, and
finally (vii) Heads kexec to the tenants kernel and it is booted2.
With all these steps the total time to provision a server is just
over 5 minutes or around 25% more than the unattested boot.

For full attestation using Heads firmware, after POST we
immediately jump to step 4 above. Heads posts in just under
a minute (almost half of which on this server is a timeout
waiting for Intel Management Engine to initialize). With
Heads burned into the firmware total provisioning time is 35%
faster than the fully attested case with stock firmware and
even 10% faster than the unattested case with stock firmware.

2 4 6 8 10 12 14 16
Number of bare-metal nodes provisioned concurrently

0

100

200

300

400

500

600

T
im

e
(S

ec
o
n
d
s)

Bolted Provisioning Time
M2 Provisioning Time

Figure 3: Initial Scaling Results.

Figure 3 shows (with UEFI firmware) the scalability of
Bolted with and without attestation as we increase the number
of concurrently booting nodes. Each experiment was run five
times, and the line shows the degradation in performance
for the average of those runs as we increase the number of

2This implementation is a very early prototype, and we expect to be able
to speed up steps 4 and 5 by incorporating iSCSI drivers into our Heads
implementation.

4

nodes from one to sixteen. With sixteen servers booting
concurrently, performance degrades by around 50 seconds for
the unattested case and around 100 seconds for the attested
case. Degradation in the unattested experiments is due to a
large number of concurrent block requests to the small scale
Ceph deployment (with only 27 disks). Experiments [36]
with a larger scale Ceph deployment demonstrated better M2
scalability. Performance of a fully attested boot degrades by
only 13% as we move to 16 servers.

7 Discussion

In this paper, we describe Bolted, an architecture for a bare
metal cloud that is appropriate for even the most security sensi-
tive tenants. For these tenants, Bolted enables protection from
attacks: (i) prior to occupancy using attestation to ensure that
any nodes with compromised firmware are rejected and by
isolating nodes (in airlocks) until they can be added to tenant
enclaves, (ii) during occupancy by allocating entire servers to
avoid virtualization attacks and by providing a secure model
to distribute tenant keys for encrypting storage and network
traffic, (iii) after occupancy by using firmware that scrubs
memory prior to booting other software and using M2 for
network mounted storage. The only trust these tenants need
to place in the provider is: (a) the availability of the resources
and (b) that the physical hardware has not been compromised.

The only Bolted service that needs to be deployed by a
provider is the isolation service (e.g., HIL), which needs to be
trusted by the provider to control the physical switches. All
other services can be deployed by a tenant or on their behalf
by a third party and the orchestration to enable an attested boot
is managed by scripts controlled by the tenant. This means
that a security sensitive tenant can operate these services in
their own environment. Customers with specialized needs
may choose to develop their own variants of these services.

The cost/complexity/performance/security trade-offs are
fully under the tenants control. A tenant that doesn’t want
the cost and complexity to deploy their own instance of
Keylime and M2, or that wants to take advantage of a
large-scale implementation by the provider, can choose to
trust provider-deployed versions of these services. Also, if
a tenant chooses to trust the network isolation of the provider
(e.g. HIL) he/she may feel no need to encrypt network
and/or storage traffic. Finally, tenants that are willing to trust
firmware validation (e.g. firmware is bug-free and signed by
the vendor) are free to do that and will not incur any of the
performance overhead of attestation.

To enable a wide community to inspect them and minimize
their TCB, all components of Bolted are open source,
including Keylime [4], Heads [22], M2 [2], and HIL [1]. We
designed HIL, for example, to be a simple micro-service
rather than a general purpose tool like IRONIC [17] or
Emulab [9]. HIL is being incorporated into a variety of

different use cases by adding tools and services on and around
it rather than turning it into a general purpose tool. Another
key example of a small open source component is Heads.
Heads is much simpler than UEFI. Since it is based on Linux,
it has a code base that is under constant examination by a
huge community of developers. Heads is reproducibly built,
so a tenant can examine the software to ensure that it meets
their security requirements and then ensure that the firmware
deployed on machines is the version that they require. For
example, the firmware must measure all of itself before
launching the next level of software. As another example, we
need to make sure that firmware zeros all the memory of a
server before enabling subsequent software to run3.

We are not able to flash Heads on all servers, and the
servers we have flashed it on require physical access [23].
However, we are working with the OpenCompute community
to both enable Heads to be flashed remotely and to ensure
that OpenCompute vendors provide Heads as a supported
option; it is enormously difficult without vendor support
to ensure that servers with minor changes will successfully
boot. If we cannot flash our own firmware, Bolted uses
stock firmware to download Heads. In this situation, Heads
provides us with a standardized execution environment for
the Keylime client and download the tenant kernel. While we
have no guarantee that the stock firmware is up-to-date and
fully measured, in this situation Bolted provides attestation
against the white list of the most up-to-date firmware to
ensure known vulnerabilities have been addressed.

Bolted protects against compromise of firmware executable
by the system CPU; however modern systems may have other
processors with persistent firmware inaccessible to the main
CPU; compromise of this firmware is not addressed by this
approach. These include: Base Management Controllers
(BMCs) [37], the Intel Management Engine [18,32,39], PCIe
devices with persistent flash-based firmware, like some GPUs
and NICs, and storage devices [30]. Additional work (e.g.
techniques like IOMMU use, disabling the Management
Engine [3] and the use of systems without unnecessary
firmware) may be needed to meet these threats.

While it is a work in progress, our early scalability results
are encouraging, even in an initial prototype on a testbed
with several known performance and scalability issues. They
suggest that a complete implementation of Bolted with Heads
burned into the firmware and a larger scale storage backend
will enable us to elastically provision dozens, perhaps even
hundreds of fully attested servers in under five minutes. If we
can achieve this, it will make Bolted appropriate for highly-
elastic security-sensitive situations, e.g., a national emergency
requiring many computers. This will hugely reduce the need
for institutions that keep around large numbers of largely idle
machines to deal with low probability events.

3We need to zero memory in the firmware since a malicious provider
may steal a server from a tenant at any point and we need to make sure that
all state is removed from the node before the next tenant can see it.

5

References
[1] hil: Hardware Isolation Layer, formerly Hardware as a Service.

https://github.com/CCI-MOC/hil.

[2] Malleable Metal as a Service (M2). https://github.com/CCI-MOC/M2.

[3] me cleaner: Tool for partial deblobbing of intel me/txe firmware
images. https://github.com/corna/me cleaner.

[4] python-keylime: Bootstrapping and Maintaining Trust in the Cloud.
https://github.com/mit-ll/python-keylime.

[5] Trusted Platform Module (TPM) Summary. https:
//trustedcomputinggroup.org/trusted-platform-module-tpm-summary/,
Apr. 2008.

[6] 4 major reasons some organizations are still reluctant to move to the
cloud|Logicalis. http://www.hypeorripe.com/2013/11/13/4-major-
reasons-some-organizations-are-still-reluctant-to-move-to-the-cloud,
2013.

[7] Creating a Classified Processing Enclave in the Public Cloud|IARPA.
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-
information/creating-a-classified-processing-enclave-in-the-public-
cloud, 2017.

[8] Report to the President on Federal IT Modernization - Introduction to
the Report. https://itmodernization.cio.gov/, 2017.

[9] ANDERSON, D. S., HIBLER, M., STOLLER, L., STACK, T., AND
LEPREAU, J. Automatic online validation of network configuration in
the emulab network testbed. In Autonomic Computing, 2006. ICAC’06.
IEEE International Conference on (2006), IEEE, pp. 134–142.

[10] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTIAINEN, K.,
CAPKUN, S., AND SADEGHI, A. Software grand exposure: SGX
cache attacks are practical. CoRR abs/1702.07521 (2017).

[11] BUCCI, S. Getting Cyber Serious: Mastering the Challenges of Federal
Cloud Computing. The Heritage Foundation.

[12] BULYGIN, Y., LOUCAIDES, J., FURTAK, A., BAZHANIUK, O., AND
MATROSOV, A. Summary of attacks against BIOS and secure boot.
Defcon-22 (2014).

[13] BUTTERWORTH, J., KALLENBERG, C., KOVAH, X., AND HERZOG,
A. BIOS Chronomancy: Fixing the core root of trust for measurement.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (New York, NY, USA, 2013), CCS
’13, ACM, pp. 25–36.

[14] CANONICAL. Metal as a service. urlhttps://maas.ubuntu.com/.

[15] CORPORATION, I. A Trusted Cloud Solution from HyTrust,
VMware, and Intel. https://www.intel.com/content/www/us/en/cloud-
computing/path-to-secure-compliant-trusted-cloud-brief.html, 2016.

[16] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security
(2016), vol. 16, pp. 857–874.

[17] DER VEEN ET AL., D. V. Openstack ironic wiki. url-
https://wiki.openstack.org/wiki/Ironic.

[18] ERMOLOV, M., AND GORYACHY, M. How to hack a turned - off
computer, or running unsigned code in intel management engine.
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-
How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-
Code-In-Intel-Management-Engine.pdf, Dec 2017.

[19] FUJITA, T., AND CHRISTIE, M. tgt: Framework for storage target
drivers. In Proceedings of the Linux Symposium (2006), vol. 1, Citeseer,
pp. 303–312.

[20] HEASMAN, J. Rootkit threats. Network Security 2006, 1 (2006), 18–19.

[21] HENNESSEY, J., TIKALE, S., TURK, A., KAYNAR, E. U., HILL, C.,
DESNOYERS, P., AND KRIEGER, O. HIL: Designing an exokernel for
the data center. In Proceedings of the 7th ACM Symposium on Cloud
Computing (SoCC’16) (Santa Clara, CA, Oct. 2016).

[22] HUDSON, T. heads: A minimal Linux that runs as a coreboot or
LinuxBoot ROM payload to provide a secure, flexible boot environment
for laptops and servers. https://github.com/osresearch/heads.

[23] HUDSON, T. Heads Webpage. https://trmm.net/Heads.

[24] HUDSON, T., KOVAH, X., AND KALLENBERG, C. ThunderStrike
2: Sith Strike. Black Hat USA Briefings (2015).

[25] HUDSON, T., AND RUDOLPH, L. Thunderstrike: EFI firmware
bootkits for Apple Macbooks. In Proceedings of the 8th ACM
International Systems and Storage Conference (2015), ACM, p. 15.

[26] IEEE. 802.1q-2014 - bridges and bridged networks.
http://www.ieee802.org/1/pages/802.1Q-2014.html.

[27] INC., A. W. S. Amazon EC2 Bare Metal Instances with Direct Access
to Hardware. https://aws.amazon.com/blogs/aws/new-amazon-ec2-
bare-metal-instances-with-direct-access-to-hardware/, 2017.

[28] INTERNAP. Bare-metal AgileSERVER. http://www.internap.com/bare-
metal/, 2015.

[29] KING, S. T., AND CHEN, P. M. Subvirt: Implementing malware with
virtual machines. In Security and Privacy, 2006 IEEE Symposium on
(2006), IEEE, pp. 14–pp.

[30] KIRK, J. Destroying your hard drive is the only way to stop this
super-advanced malware. https://www.pcworld.com/article/2884952/
equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-
russia.html, Feb 2015.

[31] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND
YAROM, Y. Spectre attacks: Exploiting speculative execution. ArXiv
e-prints (Jan. 2018).

[32] KROIZER, A. Tpm and intel ptt overview. http://tce.webee.
eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK TPM-
overview-technion.pdf, Sep 2015.

[33] LEE, S., SHIH, M., GERA, P., KIM, T., KIM, H., AND PEINADO, M.
Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. CoRR abs/1611.06952 (2016).

[34] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,
W., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y., AND
HAMBURG, M. Meltdown. ArXiv e-prints (Jan. 2018).

[35] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B. Last-level
cache side-channel attacks are practical. In 2015 IEEE Symposium on
Security and Privacy (May 2015), pp. 605–622.

[36] MOHAN, A., TURK, A., GUDIMETLA, R., TIKALE, S., HENNESSEY,
J., KAYNAR, U., G.COOPERMAN, DESNOYERS, P., AND KRIEGER,
O. M2: Malleable Metal as a Service. ArXiv e-prints (2018).

[37] MOORE, H. A penetration tester’s guide to ipmi and bmcs. https:
//blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/,
Aug 2017.

[38] MORGAN, B., ALATA, E., NICOMETTE, V., AND KANICHE, M.
Bypassing IOMMU protection against I/O attacks. In 2016 Seventh
Latin-American Symposium on Dependable Computing (LADC) (Oct
2016), pp. 145–150.

[39] NEWMAN, L. H. Intel chip flaws leave millions of devices
exposed. https://www.wired.com/story/intel-management-engine-
vulnerabilities-pcs-servers-iot/, Nov 2017.

[40] O’KEEFFE, D., MUTHUKUMARAN, D., AUBLIN, P.-L., KEL-
BERT, F., PRIEBE, C., LIND, J., ZHU, H., AND PIETZUCH, P.
spectre-attack-sgx. https://github.com/lsds/spectre-attack-sgx.

[41] PACKET. The promise of the cloud delivered on bare metal.
https://www.packet.net, 2017.

[42] PAQUETTE, S., JAEGER, P. T., AND WILSON, S. C. Identifying the
security risks associated with governmental use of cloud computing.
Government Information Quarterly 27, 3 (July 2010), 245–253.

6

https://github.com/CCI-MOC/hil
https://github.com/CCI-MOC/M2
https://github.com/corna/me_cleaner
https://github.com/mit-ll/python-keylime
https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
http://www.hypeorripe.com/2013/11/13/4-major-reasons-some-organizations-are-still-reluctant-to-move-to-the-cloud
http://www.hypeorripe.com/2013/11/13/4-major-reasons-some-organizations-are-still-reluctant-to-move-to-the-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://www.iarpa.gov/index.php/working-with-iarpa/requests-for-information/creating-a-classified-processing-enclave-in-the-public-cloud
https://itmodernization.cio.gov/
https://www.intel.com/content/www/us/en/cloud-computing/path-to-secure-compliant-trusted-cloud-brief.html
https://www.intel.com/content/www/us/en/cloud-computing/path-to-secure-compliant-trusted-cloud-brief.html
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://github.com/osresearch/heads
https://trmm.net/Heads
http://www.ieee802.org/1/pages/802.1Q-2014.html
https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/
http://www.internap.com/bare-metal/
http://www.internap.com/bare-metal/
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html
https://www.pcworld.com/article/2884952/equation-cyberspies-use-unrivaled-nsastyle-techniques-to-hit-iran-russia.html
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
http://tce.webee.eedev.technion.ac.il/wp-content/uploads/sites/8/2016/01/AK_TPM-overview-technion.pdf
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://www.wired.com/story/intel-management-engine-vulnerabilities-pcs-servers-iot/
https://www.wired.com/story/intel-management-engine-vulnerabilities-pcs-servers-iot/
https://github.com/lsds/spectre-attack-sgx
https://www.packet.net

[43] RACKSPACE. Rackspace Cloud Big Data OnMetal.
http://go.rackspace.com/baremetalbigdata/, 2015.

[44] RAZAVI, K., GRAS, B., BOSMAN, E., PRENEEL, B., GIUFFRIDA,
C., AND BOS, H. Flip Feng Shui: Hammering a needle in the software
stack.

[45] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE, S.
Hey, you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th ACM conference
on Computer and communications security (2009), ACM, pp. 199–212.

[46] RUTKOWSKA, J. Intel x86 considered harmful, 2015.
https://blog.invisiblethings.org/papers/2015/x86 harmful.pdf.

[47] SCHEAR, N., CABLE, II, P. T., MOYER, T. M., RICHARD, B., AND
RUDD, R. Bootstrapping and maintaining trust in the cloud. In Proceed-
ings of the 32Nd Annual Conference on Computer Security Applications
(New York, NY, USA, 2016), ACSAC ’16, ACM, pp. 65–77.

[48] SOFTLAYER. Big data solutions. http://www.softlayer.com/big-data,
2015.

[49] WAGNER, H., ZACH, D.-I. M., AND LINTENHOFER, D.-I. F. M.
A.-P. BIOS-rootkit LightEater.

[50] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D., AND
MALTZAHN, C. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation (2006), USENIX Association, pp. 307–320.

[51] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking intel trusted
execution technology. Black Hat DC (2009).

[52] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In Proceed-
ings of the 36th IEEE Symposium on Security and Privacy (Oakland)
(May 2015), IEEE Institute of Electrical and Electronics Engineers.

7

http://go.rackspace.com/baremetalbigdata/
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://www.softlayer.com/big-data

	Introduction
	Threat Model
	Design Philosophy
	Architecture
	Implementation
	Evaluation
	Discussion

